Open Hole Packers Provide Zonal Isolation for a High Pressure Acid Stimulation within a Chalk Reservoir

Author(s):  
P. Hazel ◽  
H. Singh ◽  
J. Baardsen ◽  
R. Reves Vasques ◽  
R. Pearcy ◽  
...  
2019 ◽  
Author(s):  
Yosafat Esquitin ◽  
Brian Schwanitz ◽  
Guido Moreno ◽  
Natalia Avella ◽  
Oscar Henao

2021 ◽  
Author(s):  
Ebikebena M. Ombe ◽  
Ernesto G. Gomez ◽  
Aldia Syamsudhuha ◽  
Abdullah M. AlKwiter

Abstract This paper discusses the successful deployment of Multi-stage Fracturing (MSF) completions, composed of novel expandable steel packers, in high pressure, high temperature (HP/HT) horizontal gas wells. The 5-7/8" horizontal sections of these wells were drilled in high pressure, high temperature gas bearing formations. There were also washed-outs & high "dog-legs" along their wellbores, due to constant geo-steering required to keep the laterals within the hydrocarbon bearing zones. These factors introduced challenges to deploying the conventional MSF completion in these laterals. Due to the delicate nature of their packer elastomers and their susceptibility to degradation at high temperature, these conventional MSF completions could not be run in such hostile down-hole conditions without the risk of damage or getting stuck off-bottom. This paper describes the deployment of a novel expandable steel packer MSF completion in these tough down-hole conditions. These expandable steel packers could overcome the challenges mentioned above due to the following unique features: High temperature durability. Enhanced ruggedness which gave them the ability to be rotated & reciprocated during without risk of damage. Reduced packer outer diameter (OD) of 5.500" as compared to the 5.625" OD of conventional elastomer MSF packers. Enhanced flexibility which enabled them to be deployed in wellbores with high dog-leg severity (DLS). With the ability to rotate & reciprocate them while running-in-hole (RIH), coupled with their higher annular clearance & tolerance of high temperature, the expandable steel packers were key to overcoming the risk of damaging or getting stuck with the MSF completion while RIH. Also, due to the higher setting pressure of the expandable steel packers when compared to conventional elastomer packers, there was a reduced risk of prematurely setting the packers if high circulating pressure were encountered during deployment. Another notable advantage of these expandable packers is that they provided an optimization opportunity to reduce the number of packers required in the MSF completion. In a conventional MSF completion, two elastomer packers are usually required to ensure optimum zonal isolation between each MSF stage. However, due to their superior sealing capability, only one expandable steel packer is required to ensure good inter-stage isolation. This greatly reduces the number of packers required in the MSF completion, thereby reducing its stiffness & ultimately reducing the probability of getting stuck while RIH. The results of using these expandable steel packers is the successful deployment of the MSF completions in these harsh down-hole conditions, elimination of non-productive time associated with stuck or damaged MSF completion as well as the safe & cost-effective completion in these critical horizontal gas wells.


2014 ◽  
Author(s):  
A.. Bottiglieri ◽  
A.. Brandl ◽  
R.S.. S. Martin ◽  
R.. Nieto Prieto

Abstract Cementing in wellbores with low fracture gradients can be challenging due to the risk of formation breakdowns when exceeding maximum allowable equivalent circulation densities (ECDs). Consequences include severe losses and formation damage, and insufficient placement of the cement slurry that necessitates time-consuming and costly remedial cementing to ensure zonal isolation. In recent cementing operations in Spain, the formation integrity test (FIT) of the open hole section indicated that the formation would have been broken down and losses occurred based on calculated equivalent circulating densities (ECDs) if the cement slurry had been pumped in a single-stage to achieve the operator's top-of-cement goal. As a solution to this problem, cementing was performed in stages, using specialty tools. However, during these operations, the stage tool did not work properly, wasting rig time and resulting in unsuccessful cement placement. To overcome this issue, the operator decided to cement the section in a single stage, preceded by a novel aqueous spacer system that aids in strengthening weak formations and controlling circulation losses. Before the operation, laboratory testing was conducted to ensure the spacer system's performance in weak, porous formations and better understand its mechanism. This paper will outline the laboratory testing, modeling and engineering design that preceded this successful single stage cementing job in a horizontal wellbore, with a final ECD calculated to be 0.12 g/cm3 (1.00 lb/gal) higher than the FIT-estimated figure.


Author(s):  
Ming Luo ◽  
Deli Gao ◽  
Xin Zhao ◽  
Yuan Chen ◽  
Yupeng Yang ◽  
...  

Abstract The South China Sea has rich natural gas source with typical high-pressure high-temperature (HPHT) and the extremely narrow drilling window, which leads to frequent influx, even borehole abandonment. However, horizontal gas wells have been placed in the area to develop the gas reservoir, which presents greater well control challenges. Therefore, the influx risk evaluation is quite necessary to guide the well control design. Firstly, the influx mechanism is analyzed based on gas intrusion to provide a theoretical basis for well control design. It is found that influx usually occurs when drilling the high-temperature stratums and target layers. Secondly, the relationship between horizontal open-hole length and influx volume is calculated under different reservoir permeability, reservoir thickness, negative bottom hole pressure and horizontal open-hole section length. Thirdly, the characteristics of gas-liquid two-phase flow are described. Fourthly, the inflow risk evaluation and well control strategies of the target horizontal gas wells are proposed, and the influx risk evaluation envelope was established. The influx risk evaluation and well control strategies have been successfully applied to the DF gas field featuring offshore HPHT. Horizontal gas wells were drilled in the micro pressure window without accidents and the well cost was significantly reduced.


2014 ◽  
Author(s):  
Johnny Bardsen ◽  
Paul Hazel ◽  
Ricardo R. Reves Vasques ◽  
Oyvind Hjorteland ◽  
Oystein Eikeskog
Keyword(s):  

2016 ◽  
Vol 35 (8) ◽  
pp. 821-826 ◽  
Author(s):  
Chengqiang Ren ◽  
Ye Peng ◽  
Bing Li ◽  
Shuliang Wang ◽  
Taihe Shi

AbstractThe experiments were operated for the cylindrical sample (cement/steel) in high temperature and high pressure (HTHP) CO2 environment to simulate surrounding CO2 attack in oil and gas well. The interfacial evolutions between well cement and casing steel were measured, including mechanical property, structure alteration, chemical change and electrochemical character. The interfacial behaviors are attributed to the competition of hydration and degradation of Portland cement. The damage at the interface was faster than the cement bulk deterioration by carbonation. Thus, the interface provided a potential flow leakage pathway for the HTHP gas and fluid in the well, so improving interfacial stability between well cement and casing steel is the key issue to long-term zonal isolation.


2009 ◽  
Author(s):  
Girish Dinkar Sarap ◽  
Manoj Sivanandan ◽  
Sandip Prabhakar Patil ◽  
Abhimanyu Deshpande

Sign in / Sign up

Export Citation Format

Share Document