Alkyl Ether Carboxylate Surfactants for Chemically Enhanced Oil Recovery in Harsh Field Conditions

Author(s):  
G. Alvarez Jürgenson ◽  
C. Bittner ◽  
V. Kurkal-Siebert ◽  
G. Oetter ◽  
J. Tinsley
2020 ◽  
Vol 2 (1) ◽  
pp. 62-65
Author(s):  
NUR ASYRAF MD AKHIR ◽  
AFIF IZWAN ABD HAMID ◽  
ISMAIL MOHD SAAID ◽  
ANITA RAMLI

Surfactant flooding is one of the chemical enhanced oil recovery (CEOR) techniques that can be used to improve oil recovery. The surfactant injection reduces the oil-water interfacial tension and mobilizes residual oil towards the producing well. In this paper, the performance of alkyl ether carboxylate (AEC) and calcium lignosulfonate (CLS) in individual and mixed surfactant systems were investigated based on their ability to reduce the interfacial tension through a spinning drop method.   The interfacial tensions of individual and mixed surfactant systems in different brine systems were measured against decane at 25°C and 98°C. The results show that the individual and mixed surfactant systems in 3.5 wt.% NaCl brine has a significant reduction in interfacial tension at 98°C. In contrast, the presence of hardness in 2.5 wt.% NaCl and 1.0 wt.% MgCl2 brine reduces the interfacial tension of the individual AEC surfactant system and mixed surfactant system significantly at 98°C except for the individual CLS system. Meanwhile, the interfacial tension of mixed surfactant system decreases with increasing surfactant concentration in two brine systems and at 98°C. The findings show the significant application of the AEC and CLS surfactant mixture considering the harsh reservoir conditions for the chemical enhanced oil recovery application.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document