A Two-Phase flow Model To Predict Liquid Holdup and Pressure Gradient of Horizontal well

Author(s):  
Darong Xu ◽  
Xiangfang Li ◽  
Yuansheng Li ◽  
Sainan Teng
Author(s):  
Catalina Posada ◽  
Paulo Waltrich

The present investigation presents a comparative study between two-phase flow models and experimental data. Experimental data was obtained using a 42 m long, 0.05 m ID tube system. The experimental data include conditions for pressures ranging from 1.2 to 2.8 bara, superficial liquid velocities 0.02–0.3 m/s, and superficial gas velocity ranges 0.17–26 m/s. The experimental data was used to evaluate the performance of steady-state empirical and mechanistic models while estimating liquid holdup and pressure gradient under steady-state and oscillatory conditions. The purpose of this analysis is first to evaluate the accuracy of the models predicting the liquid holdup and pressure gradient under steady-state conditions. Then, after evaluating the models under state-steady conditions, the same models are used to predict the same parameters for oscillatory and periodic conditions for similar gas and liquid velocities. The transient multiphase flow simulator OLGA, which has been widely used in the oil and gas industry, was implemented to model one oscillatory case to evaluate the prediction improvement while using a transient instead of a steady-state model to predict oscillatory flows. For the model with best performance for steady-state pressure gradient prediction, the absolute percentage error is 12% for Uls = 0.02 m/s and 5% for Uls = 0.3. For oscillatory conditions, the absolute percentage error is 30% for Uls = 0.02 m/s and 4% for Uls = 0.3. OLGA results underpredict the experimental pressure gradient under oscillatory conditions with errors up to 30%. Therefore, it was possible to conclude that the models can predict the average of the oscillatory data almost as well as for steady-state conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wei-Yang Xie ◽  
Xiao-Ping Li ◽  
Lie-Hui Zhang ◽  
Xiao-Hua Tan ◽  
Jun-Chao Wang ◽  
...  

After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Renato P. Coutinho ◽  
Ligia Tornisiello ◽  
Paulo J. Waltrich

Abstract A limited amount of work exists on gas–liquid flow in vertical pipe annulus, and, to the knowledge of the authors, there is no work on the literature to characterize vertical downward two-phase flow in pipe annulus. In the petroleum industry, downward two-phase in annulus is encountered on liquid-assisted gas-lift (LAGL) unloading and production operations. This study presents experimental data for pressure gradient, liquid holdup, and flow regimes for vertical downward two-phase (air and water) flow in pipe annulus. Also, the applicability of two-phase flow models are evaluated. The experimental results show that the liquid holdup is consistently higher for downward flow in annulus than in pipes for the annular flow regime, and these differences are as high as 45%. When the flow regime map for downward flow in annulus is compared with the ones in the literature for flow in pipes, it is observed that the intermittent flow in pipes occurs at lower liquid velocities than flow in annulus. The comparison between experimental data and model results also shows some discrepancy for liquid holdup and pressure gradient. These differences are high for annular and intermittent flow regimes, with errors of 100% for the liquid holdup and 200% for pressure gradient. However, the errors for bubble flow regime are much smaller, generally lower than 20%.


2015 ◽  
Vol 25 (9) ◽  
pp. 795-817 ◽  
Author(s):  
Mika P. Jarvinen ◽  
A. E. P. Kankkunen ◽  
R. Virtanen ◽  
P. H. Miikkulainen ◽  
V. P. Heikkila

2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

Sign in / Sign up

Export Citation Format

Share Document