The Effects of Test Interval on Safety Instrumented Function (SIF) According to Safety Integrity Level (SIL) Value on Three Phase Separator Application

2015 ◽  
Author(s):  
Totok R. Biyanto ◽  
Andika D. S. Natawiria ◽  
Franky Kusuma ◽  
Ali Musyafa ◽  
Ronny D. Noriyati ◽  
...  
2021 ◽  
pp. 633-647
Author(s):  
Zahira Proaño C. ◽  
Víctor H. Andaluz

Author(s):  
Ang Li ◽  
Jianfeng Bai ◽  
Yun Shen ◽  
Hang Jin ◽  
Wei Wang ◽  
...  

The three-phase separator has a wide range of applications in oil production industry. For the purpose of studying the effect of heating temperature, demulsifiers and water content on the separation of oil-water mixture in the three-phase separator, eight kinds of oil samples were taken from different oil transfer stations in Changqing Oilfield and the mixtures were prepared by stirring method. To simulate the two-stage dehydration process, the first stage dehydration experiments without any heating were performed on mixtures at the dose of 100ppm demulsifer at 20°C, and the water cut of these mixtures is the same as that of the gathering pipeline in each oil transfer station. The water cut of the upper crude oil was measured after 40 minutes, and the values of them ranged from 0.5 vol% to 65.2 vol%. No visual stratification was observed for the sample most difficult to separate, so it was selected to conduct the second stage dewatering process. Three bottles of the same mixture were prepared and heated to 30°C, 40°C and 50°C, respectively. The results showed that all of them stratified in 10 minutes, and the water-cut values of the upper oil layer were 1.4 vol%, 0.5 vol% and 0.3 vol%, respectively, compared to 65.2 vol% at 20°C. When the concentration of demulsifier was changed to 200ppm and 300ppm, the results exhibited almost no differences. So it is deduced that the further improvement of heating temperature and demulsifier dose have limited enhancement on oil-water separation. At Last, 35 vol%, 50 vol%, 70 vol% and 85 vol% water cut mixtures of the special oil sample were made to experiment as previously. In consequence, the 35 vol% water-cut emulsions presented a relatively slow rate of oil-water stratification at low heating temperature, and the oil content of the lower separated water was improved by the addition of demulsifier dosage above 100ppm when the water cut was 90 vol%. It is indicated that high heating temperature is necessarry for low water-cut mixtures oil-water separation and can be appropriately reduced to save energy consumption as the water cut continues to rise. The demulsifier dosage is also neccessary be controlled in high water cut period. These experimental data provide the basis for the further optimization operation of the three-phase separator.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yong-tu Liang ◽  
Sheng-qiu Zhao ◽  
Xia-xue Jiang ◽  
Xian-qi Jia ◽  
Wang Li

The conventional measurement method can no longer guarantee the accuracy requirement after the oilfield development entering high water cut stage, due to the water content and gas phase in the flow. In order to overcome the impact of measurement deviation the oilfield production management, the flow field of three-phase separator is studied numerically in this paper using Fluent 6.3.26. Taking into consideration the production situation of PetroChina Huabei Oilfield and the characteristics of three-phase separator, the effect of internal flow status as well as other factors such as varying flow rate, gas fraction, and water content on the separation efficiency is analyzed. The results show that the separation efficiencies under all operation conditions are larger than 95%, which satisfy the accuracy requirement and also provide the theoretical foundation for the application of three-phase separators at oilfields.


2020 ◽  
Vol 14 (3) ◽  
pp. 137-155
Author(s):  
A. J. G. Carvalho ◽  
D. C. Galindo ◽  
M. S. C. Tenório ◽  
J. L. G. Marinho

2018 ◽  
Vol 12 (1) ◽  
pp. 11-20
Author(s):  
C. M. B. Araújo ◽  
H. A. Nascimento ◽  
C. J. Cavalcanti ◽  
M. A. M. Sobrinho ◽  
M. F. Pimentel

2019 ◽  
Vol 14 (3) ◽  
pp. 549-559 ◽  
Author(s):  
M. Njoya ◽  
M. Basitere ◽  
S. K. O. Ntwampe

Abstract This study evaluated the performance of a novel high rate anaerobic bioreactor system for the treatment of poultry slaughterhouse wastewater (PSW). The new system consisted of a granule-based technology operated in a down-flow configuration, with the assistance of medium-sized pumice stones used as packing materials for the retention of the anaerobic granules, to avoid challenges associated with the use of the three-phase separator of up-flow systems and the washout of the anaerobic biomass. Furthermore, a recycling stream was applied to the system to improve the mixing inside the Down-flow Expanded Granular Bed Reactor (DEGBR), i.e. the influent distribution to the granular biomass, and the implementation of intermittent fluidization when required to alleviate the effects of pressure drop in such systems. The DEGBR was operated under mesophilic conditions (30–35 °C) and achieved total chemical oxygen demand (tCOD), five-day biological oxygen demand and total suspended solids average removal percentages >95%, and a fats, oils and grease average removal percentage of 93.67% ± 4.51, for an organic loading rate varying between 1.1 to 38.9 gCOD/L.day.


2012 ◽  
Vol 65 (6) ◽  
pp. 1033-1040 ◽  
Author(s):  
Ziyu Song ◽  
Qiang Li ◽  
Dan Wang ◽  
Jie Zhang ◽  
Jianmin Xing

An up-flow inner-cycle anoxic bioreactor with a novel three phase separator was designed and implemented for the treatment of sulfide wastewater. The sulfide in wastewater could be converted to elemental sulfur by sulfide oxidizing bacteria, and recovered by simple precipitation. When the oxidation–reduction potential (ORP) was controlled at −100 mV, 91.3% of sulfide could be oxidized to elemental sulfur. To achieve high removal percentage of sulfide and conversion percentage of sulfur, the pH of influent should be controlled in the range from 7.0 to 8.0. The optimal desulfurization process was carried out at 400 mmol L−1d−1 sulfide loading rate and 120 min hydraulic retention time (HRT). The removal percentage of sulfide was approximately 95.2% and elemental sulfur conversion percentage was above 90.3%. These results demonstrated that the novel up-flow in-cycle bioreactor had a potential value for the enhanced treatment of sulfide wastewater from biogas purification.


Sign in / Sign up

Export Citation Format

Share Document