scholarly journals Numerical Simulation on Flow Field of Oilfield Three-Phase Separator

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yong-tu Liang ◽  
Sheng-qiu Zhao ◽  
Xia-xue Jiang ◽  
Xian-qi Jia ◽  
Wang Li

The conventional measurement method can no longer guarantee the accuracy requirement after the oilfield development entering high water cut stage, due to the water content and gas phase in the flow. In order to overcome the impact of measurement deviation the oilfield production management, the flow field of three-phase separator is studied numerically in this paper using Fluent 6.3.26. Taking into consideration the production situation of PetroChina Huabei Oilfield and the characteristics of three-phase separator, the effect of internal flow status as well as other factors such as varying flow rate, gas fraction, and water content on the separation efficiency is analyzed. The results show that the separation efficiencies under all operation conditions are larger than 95%, which satisfy the accuracy requirement and also provide the theoretical foundation for the application of three-phase separators at oilfields.

2012 ◽  
Vol 31 ◽  
pp. 145-149 ◽  
Author(s):  
Ping Yu ◽  
Shilei Liu ◽  
Yaohu Wang ◽  
Wei Lin ◽  
Zhihui Xiao ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.


2021 ◽  
Author(s):  
Luying Zhang ◽  
Loukia Kritioti ◽  
Peng Wang ◽  
Jiangnan Zhang ◽  
Mehrdad Zangeneh

Abstract A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper an evaluation method for computational fluid dynamics simulations has been developed to quantify the loss generation based on entropy production in the flow field. A breakdown of losses caused by different mechanisms (such as skin friction, secondary flow, tip clearance vortex and shock waves) is achieved by separating the flow field into different zones. Each zone is defined by the flow physics rather than by geometrical locations or empirical correlations, which makes the method a more general approach and applicable to different machine types. The method has been applied to both subsonic and transonic centrifugal compressors, where internal flow is complex due to the Coriolis acceleration and the curvature effect. An evaluation of loss decomposition is obtained at various operational conditions. The impact of design modification is also assessed by applying the same analysis to an optimized design.


2013 ◽  
Vol 444-445 ◽  
pp. 476-478 ◽  
Author(s):  
Yong Zhong Zeng ◽  
Xiao Bing Liu

If deviating from the optimal operation conditions, flow separation will occur on the blade of the runner in a low specific speed turbine. At this time, the turbulent flow of flow field in the blade duct will be in a strong non-equilibrium state, and thus the blade duct vortexes will be generated. To further study the mechanism of blade duct vortexes and to control the generation of these vortexes, Spalart-Allmaras (S-A) model was used to numerically simulate and calculate the internal flow in the low specific speed turbine runner under low load conditions. The blade duct vortexes in the turbine runner were accurately predicted. The effect of short blade in eliminating and reducing the vortexes in the low specific speed turbine runner was analyzed and compared.


2013 ◽  
Vol 373-375 ◽  
pp. 409-412
Author(s):  
Zhi Guo Zhao ◽  
Wen Ming Yu

Aiming at the low efficiency problem of the traditional gas-oil separator, this paper put forward a centrifugal gas-oil separator. In order to identify out the interior fluid field character of centrifugal gas-oil separator, RANS equation, RNG k-ε model and discrete phase model was applied to simulate the interior fluid field character and separation efficiency of centrifugal gas-oil separator. The simulation results showed that the flow field in the disc clearance was mainly laminar flow, and the flow field at the import and export of the disc was turbulence. Meanwhile, the velocity and pressure of the interior fluid field were equably distributed, the velocity and pressure in the disc clearance fluctuate in a tight range along vertical direction, and decrease along horizontal direction, and the particles in the disc clearance were distributed uniformly. The separation efficiency was 96.6% and the results met the design requirements.


2019 ◽  
Vol 944 ◽  
pp. 1199-1207
Author(s):  
Rui Yun Wang ◽  
Jin Yu Yin ◽  
Su Ping Cui

In this paper, CFD numerical simulation method was adopted to study the internal flow field of experimental dry granulating device of blast furnace slag and to research the impact of equipment structure and wind speed on cooling effectiveness. Main content included the internal flow field uniformity under different blade type and number of inlets. The results showed that the internal flow field in strip-blades device was more uniform than fan-shaped blades device. With the increase of air inlets quantity, the internal flow field in device became more uniform and stable, especially when there were 8 air inlets in the equipment.


2021 ◽  
Vol 14 (04) ◽  
pp. 205-220
Author(s):  
A. J. G. Carvalho ◽  
D. C. Galindo ◽  
M. S. C. Tenório ◽  
J. L. G. Marinho

Fluids produced from oil reservoirs typically contain oil, natural gas, water, sediments, in varying amounts, and contaminating gases. Considering that economic interest usually targets mostly oil and gas, primary processing is used to separate water/oil/gas, in addition to treating these phases. Therefore, the well stream should be processed as soon as possible after reaching the surface. Separator vessels are among the main equipment used at surface production facilities, being responsible for the separation of the produced phases. This work focuses on studying the fluid dynamic behavior in a horizontal three-phase separator. To accomplish this goal, we used the computer fluid dynamics software ANSYS CFX. First, we performed a detailed analysis of a “Standard Case” to understand in detail the entire separation process within the vessel. The results show the three phases through the simulation time, analyses of the separation efficiency, different fluids flow lines, pressure gradient inside the vessel, and effect of the diverter baffle. It also considers a variation of fluid flow at the inlet of the separator. These analyses include pictures of all cases studied. Afterwards, some parameters of the standard case were altered to evaluate its influence on fluid dynamics behavior and the functioning of the separator vessel. At last, we analyzed the influences of oil density and viscosity on the separation. The oil quality affects the primary separation directly, as the oil density and viscosity increase, for example, increases the drag between the fluids and decreases the rate of sedimentation, which stickles the separation process difficult. Two out of the three cases generated satisfactory results. The simulation with the heaviest oil presented the worse results.


Sign in / Sign up

Export Citation Format

Share Document