scholarly journals A Separate-Phase Drag Model and a Surrogate Approximation for Simulation of the Steam-Assisted-Gravity-Drainage Process

SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 364-379 ◽  
Author(s):  
Juan C. Padrino ◽  
Xia Ma ◽  
W. Brian VanderHeyden ◽  
Duan Z. Zhang

Summary General, ensemble phase-averaged equations for multiphase flows were specialized for the simulation of the steam-assisted-gravity-drainage (SAGD) process. In the average momentum equation, fluid/solid and fluid/fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy's law for multiphase flow but augmented by the fluid/fluid viscous forces. Models for these fluid/fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes, are missed. We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all these time scales is time consuming. To address this problem, we introduce a steam-surrogate approximation to increase the steam-advection time scale, while keeping the mass and energy fluxes well-approximated. This approximation leads to approximately a 40-fold speedup in execution speed of the numerical calculations at the cost of a few percentage errors in the relevant quantities.

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA99-WA111 ◽  
Author(s):  
Anya Reitz ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

There is presently an increased need to monitor production efficiency as heavy oil reservoirs become more economically viable. We present a feasibility study of monitoring steam-assisted gravity drainage (SAGD) reservoirs using time-lapse gravimetry and gravity gradiometry. Even though time-lapse seismic has historically shown great success for SAGD monitoring, the gravimetry and gravity gradiometry methods offer a low-cost interseismic alternative that can complement the seismic method, increase the survey frequency, and decrease the cost of monitoring. In addition, both gravity-based methods are directly sensitive to the density changes that occur as a result of the replacement of heavy oil by steam. Advances in technologies have made both methods viable candidates for consideration in time-lapse reservoir monitoring, and we have numerically evaluated their potential application in monitoring SAGD production. The results indicate that SAGD production should produce a strong anomaly for both methods at typical SAGD reservoir depths. However, the level of detail for steam-chamber geometries and separations that can be recovered from the gravimetry and gravity gradiometry data is site dependent. Gravity gradiometry shows improved monitoring ability, such as better recovery of nonuniform steam movement due to reservoir heterogeneity, at shallower production reservoirs. Gravimetry has the ability to detect SAGD steam-chamber growth to greater depths than does gravity gradiometry, although with decreasing resolution of the expanding steam chambers.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Jingyi Wang ◽  
Ian Gates

To extract viscous bitumen from oil sands reservoirs, steam is injected into the formation to lower the bitumen’s viscosity enabling sufficient mobility for its production to the surface. Steam-assisted gravity drainage (SAGD) is the preferred process for Athabasca oil sands reservoirs but its performance suffers in heterogeneous reservoirs leading to an elevated steam-to-oil ratio (SOR) above that which would be observed in a clean oil sands reservoir. This implies that the SOR could be used as a signature to understand the nature of heterogeneities or other features in reservoirs. In the research reported here, the use of the SOR as a signal to provide information on the heterogeneity of the reservoir is explored. The analysis conducted on prototypical reservoirs reveals that the instantaneous SOR (iSOR) can be used to identify reservoir features. The results show that the iSOR profile exhibits specific signatures that can be used to identify when the steam chamber reaches the top of the formation, a lean zone, a top gas zone, and shale layers.


2010 ◽  
Vol 656 ◽  
pp. 337-341 ◽  
Author(s):  
PAOLO LUCHINI ◽  
FRANÇOIS CHARRU

Section-averaged equations of motion, widely adopted for slowly varying flows in pipes, channels and thin films, are usually derived from the momentum integral on a heuristic basis, although this formulation is affected by known inconsistencies. We show that starting from the energy rather than the momentum equation makes it become consistent to first order in the slowness parameter, giving the same results that have been provided until today only by a much more laborious two-dimensional solution. The kinetic-energy equation correctly provides the pressure gradient because with a suitable normalization the first-order correction to the dissipation function is identically zero. The momentum equation then correctly provides the wall shear stress. As an example, the classical stability result for a free falling liquid film is recovered straightforwardly.


2013 ◽  
Vol 27 (7) ◽  
pp. 3883-3890 ◽  
Author(s):  
Subhayan Guha Thakurta ◽  
Abhijit Maiti ◽  
David J. Pernitsky ◽  
Subir Bhattacharjee

Sign in / Sign up

Export Citation Format

Share Document