Results & Interpretation of a High Viscous Polymer Injection Test in a South Oman Heavy Oil Field

Author(s):  
D. Rubalcava ◽  
N. Al-Azri
2021 ◽  
Author(s):  
Delamaide Eric

Abstract Polymer has been injected continuously since 2005-06 in the Pelican Lake field in Canada, starting with a pilot rapidly followed by an expansion. At some point, 900 horizontal wells were injecting 300,000 bbl/d of polymer solution and oil production related to polymer injection reached 65,000 bopd. As a result, the Pelican Lake polymer flood is the largest polymer flood in heavy oil in the world and the largest polymer flood using horizontal wells. Although some papers have already been devoted to the initial polymer flood pilots, very little has been published on the expansion of the polymer flood and this is what this paper will focus on. The paper will describe the various phases of the polymer flood expansion and their respective performances as well as discuss the specific challenges in the field including strong variations in oil viscosity (from 800 to over 10,000 cp), how irregular legacy well patterns were dealt with, and how primary, secondary and tertiary polymer injection compare. It will also show the performances of polymer injection in combination with multi-lateral wells and touch upon the surface issues including the facilities. The availability of field and production data (which are public in Canada) combined with the variability in the field properties provide us with a wealth of data to better understand the performances of polymer flooding in heavy oil. This case study will benefit engineers and companies that are interested in polymer flood, in particular in heavy oil. The paper will be a significant addition to the literature where few large scale chemical EOR expansions are described.


2021 ◽  
Vol 73 (04) ◽  
pp. 49-50
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30277, “Twelve-Year Field Applications of Offshore Heavy Oil Polymerflooding From Continuous Injection to Alternating Injection of Polymer and Water,” by Guangming Pan, Lei Zhang, and Jianting Huang, CNOOC, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2-6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Polymerflooding has been considered a suitable method for reservoirs with viscosities up to 150 mPa·s. The authors of the complete paper verify that alternating injection of polymer and water in the Bohai Bay of China proved effective and economical for heavy oil fields, even offshore. This polymerflooding pilot of initially continuous, and then alternating, injection can provide a useful technical reference for similar reservoirs. Introduction Heavy oil reserves are abundant in the Bohai oil field of China. The development of the field has proved that the field with lower viscosity (less than 350 mPa·s) can be developed effectively by water-flooding, while the unconventional heavy oil reservoir with high viscosity has not formed a mature development mode. To better use interwell reserves, a pilot polymerflooding test has been conducted in the NN field since 2008. The cumulative production of nine wells in the surrounding area reached 10.80×104 m3, which confirmed that polymer fluid injection had a good displacement effect on unconventional high-viscosity crude oil. However, with the extension of continuous injection time, the pilot test area faced various problems. In order to explore the applicability of polymerflooding technology used in offshore unconventional heavy oil fields, the polymer-injection mode was studied on the basis of laboratory experimental data and field practice, and the polymer/water alternating injection mode was analyzed. Experimental Continuous Polymerflooding. Experimental Equipment and Materials. The experimental device is composed of a driving system, an experimental model, a pressure-measurement system, a produced-liquid-collection system, and a temperature-control system. According to the distribution of reservoir physical properties in the NN field, a parallel double-tube displacement experiment with a permeability ratio of 5 was designed. The experimental cores are artificial, with a tube length of 30 cm and an inner diameter of 2.54 cm. The low-permeability tube has 1624×10-3 µm2 permeability, and the high-permeability tube has 8488×10-3 µm2 permeability. The experimental temperature is 55°C, which is consistent with the formation temperature of the NN field. The polymer is partially hydrolyzed polyacrylamide. Experimental Procedure. The experimental process includes vacuum pumping, saturating formation water, obtaining core pore volume, saturating simulated oil, calculating oil saturation water drive to a specified water cut, continuously injecting polymer solution, and measuring data. The experimental injection rate is 0.2 mL/min, and the multiple of injected pore volumes (PV) is 0.6 PV. The NN field has weak edge water, and the water cut of the well group was 60 to 90% when polymerflooding was performed. Therefore, the design scheme mainly includes waterflooding and polymerflooding stages. The polymer- injection concentration was 3000 mg/L, and the injection mode is continuous, consistent with the field test.


2019 ◽  
Vol 10 ◽  
pp. 62-67
Author(s):  
S.M. Durkin ◽  
◽  
I.N. Menshikova ◽  
L.M. Rusin ◽  
A.A. Terentiev ◽  
...  
Keyword(s):  

Author(s):  
L.F. Lamas ◽  
V.E. Botechia ◽  
D.J. Schiozer ◽  
M.L. Rocha ◽  
M. Delshad
Keyword(s):  

2014 ◽  
Author(s):  
Mohammed Omar Al-Manhali ◽  
Mohammed Al-rawahi ◽  
Suleiman Mohammed Al-hinai ◽  
Abdullah Alwazeer ◽  
Simon John Brissenden ◽  
...  
Keyword(s):  

2014 ◽  
Vol 644-650 ◽  
pp. 5142-5145 ◽  
Author(s):  
Peng Luo

China is rich in resources of heavy oil.But some oilfield heavy oil reservoir in the development process will encounter interlining, affecting the development effect. In the process of SAGD to carry out the basic research of reservoir interlayer is helpful to identify the basic attributes of reservoir in the interlayer. The interlayer of SAGD development process is helpful to find the study focus and direction of development. Steam chamber breakthrough research achievements of interlining research abroad, summarizes the steam chamber breakthrough interlining, provide technical support for the oil field SAGD breakthrough interlining, it is of great significance for promoting SAGD efficient development.


SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


Sign in / Sign up

Export Citation Format

Share Document