Maximize Efficiency of Coiled Tubing-Conveyed Perforation with Advanced Gun Deployment System and Real-Time Correlation in High-H2S/High-Pressure Wells (Russian)

2016 ◽  
Author(s):  
Rostislav Panferov ◽  
Anton Burov ◽  
Alexander Zhandin ◽  
Gelu Ghioca ◽  
Derek Boulter
2021 ◽  
Author(s):  
Abdulaziz Najaf ◽  
Mohammed Al-Haddad ◽  
Abdulrahman Al-Dhafiri ◽  
Omar Al-Anezi ◽  
Mohammed Bu-Mijdad ◽  
...  

Abstract With the continuous production from Kuwait oil reservoirs, a clear decline in reservoir pressure is observed. Subsequently, the demand for artificial lift is increasing to sustain production. Maintenance of those wells requires frequent interventions and continuous presence of workover rigs, which affects overall cost of production. Change of the electrical submersible pump (ESP) deployment method represents one of the cost reduction initiatives undertaken by the operator to reduce well intervention time and improve asset utilization. To minimize deferred production generated by the ESP replacement operation, a novel rigless approach leveraging coiled tubing (CT) was introduced in southeast and west Kuwait. It reduces operating costs and eliminates disruptions to operations by enabling rigless retrieval and redeployment of a standard ESP assembly. To evaluate the efficiency of using CT as rigless ESP retrieval and conveyance method, two candidate wells were selected to recover and redeploy a 108-ft-long ESP system. The intervention methodology relied on CT equipped with optical line and real-time downhole telemetry, a high-pressure rotary jetting tool, and a specific ESP deployment assembly. The retrieval and redeployment of the ESP was executed in a single rigless intervention, averaging less than 72 hours of operational time per well. This represents five times improvement over the standard practice using a workover rig. The intervention was executed in several stages, according to the well intervention program, and included tubing drift and cleanout runs, retrieval, inspection, and redress of the ESP assembly, followed by its successful redeployment. The high-pressure rotary jetting tool was used to condition the wellbore tubulars across the fishing area, while downhole real-time data enabled by the 1 3/4-in. CT equipped with optical telemetry were instrumental to eliminate uncertainties associated with changing downhole conditions. The casing collar locator allowed live depth control and ensured accurate positioning of the ESP. Its careful retrieval and redeployment were monitored thanks to the downhole axial force readings, which allowed controlling the weight applied on the fishing assembly. Internal and external downhole pressure data, along with downhole temperature, helped in controlling actuation and use of the high-pressure rotary jetting nozzle under nominal conditions for maximum efficiency. This enhanced rigless ESP replacement technique, made possible by the joint use of CT and real-time downhole measurements, was confirmed as a robust workover method for retrieval and redeployment of rigless ESPs in southeast and west Kuwait. The experience gained in the first two wells brings a new level of confidence to Kuwait operators about this technique, which certainly can be expanded to other fields in the Middle East and elsewhere.


2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2008 ◽  
Author(s):  
ShunChang Wang ◽  
Xinquan Zheng ◽  
Chun Jiang Zheng ◽  
Bailin Wu ◽  
YiMing Jiang ◽  
...  

2016 ◽  
Author(s):  
Diego Blanco ◽  
Khalid Rahimov ◽  
Silviu Livescu ◽  
Louis Garner ◽  
Lubos Vacik

2021 ◽  
Author(s):  
Laurie S. Duthie ◽  
Hussain A. Saiood ◽  
Abdulaziz A. Al-Anizi ◽  
Norman B. Moore ◽  
Carol Correia

Abstract Successful reservoir surveillance and production monitoring is a key component for effectively managing any field production strategy. For production logging in openhole horizontal extended reach wells (ERWs), the challenges are formidable and extensive; logging these extreme lengths in a cased hole would be difficult enough, but are considerably exaggerated in the openhole condition. A coiled tubing (CT) logging run in open hole must also contend with increased frictional forces, high dogleg severity, a quicker onset of helical buckling and early lockup. The challenge to effectively log these ERWs is further complicated by constraints in the completion where electrical submersible pumps (ESPs) are installed including a 2.4" bypass section. Although hydraulically powered coiled tubing tractors already existed, a slim CT tractor with real-time logging capabilities was not available in the market. In partnership with a specialist CT tractor manufacturer, a slim logging CT tractor was designed and built to meet the exceptional demands to pull the CT to target depth. The tractor is 100% hydraulically powered, with no electrical power allowing for uninterrupted logging during tractoring. The tractor is powered by the differential pressure from the bore of the CT to the wellbore, and is operated by a pre-set pump rate from surface. Developed to improve the low coverage in open hole ERW logging jobs, the tractor underwent extensive factory testing before being deployed to the field. The tractor was rigged up on location with the production logging tool and ran in hole. Once the coil tubing locked up, the tractor was activated and pulled the coil to cover over 90% of the open hole section delivering a pulling force of up to 3,200 lb. Real-time production logging was conducted simultaneously with the tractor activated, flowing and shut-in passes were completed to successfully capture the zonal inflow profile. Real-time logging with the tractor is logistically efficient and allows instantaneous decision making to repeat passes for improved data quality. The new slim logging tractor is the world's slimmest most compact, and the first of its kind CT tractor that enables production logging operations in horizontal extended reach open hole wells. The ability to successfully log these extended reach wells cannot be understated, reservoir simulations and management decisions can only as good as the quality of data available. Some of the advantages of drilling extended reach wells such as increased reservoir contact, reduced footprint and less wells drilled will be lost if sufficient reservoir surveillance cannot be achieved. To maximize the benefits of ERWs, creative solutions and innovative designs must continually be developed to push the boundaries further.


Sign in / Sign up

Export Citation Format

Share Document