Lean Optimization on Well Placement: Directional Drilling Operations in South of Oman Wells: A Case Study

Author(s):  
Nasser Al Kindi ◽  
Qasim Al Shehhi ◽  
Abdullah Al Adwani ◽  
Saud Al Habsi ◽  
Roy Emanuel
2021 ◽  
Vol 11 (6) ◽  
pp. 2743-2761
Author(s):  
Caetano P. S. Andrade ◽  
J. Luis Saavedra ◽  
Andrzej Tunkiel ◽  
Dan Sui

AbstractDirectional drilling is a common and essential procedure of major extended reach drilling operations. With the development of directional drilling technologies, the percentage of recoverable oil production has increased. However, its challenges, like real-time bit steering, directional drilling tools selection and control, are main barriers leading to low drilling efficiency and high nonproductive time. The fact inspires this study. Our work aims to contribute to the better understanding of directional drilling, more specifically regarding rotary steerable system (RSS) technology. For instance, finding the solutions of the technological challenges involved in RSSs, such as bit steering control, bit position calculation and bit speed estimation, is the main considerations of our study. Classical definitions from fundamental physics including Newton’s third law, beam bending analysis, bit force analysis, rate of penetration (ROP) modeling are employed to estimate bit position and then conduct RSS control to steer the bit accordingly. The results are illustrated in case study with the consideration of the 2D and 3D wellbore scenarios.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2018 ◽  
Author(s):  
Longfellow Oghale Atakele ◽  
Osahon Noruwa Airhis ◽  
Ntietemi Ekpo Etim ◽  
Fisayo Jordan Ipoola ◽  
John Osadebe Anim ◽  
...  

2016 ◽  
Author(s):  
Alfred Enyekwe ◽  
Osahon Urubusi ◽  
Raufu Yekini ◽  
Iorkam Azoom ◽  
Oloruntoba Isehunwa

ABSTRACT Significant emphasis on data quality is placed on real-time drilling data for the optimization of drilling operations and on logging data for quality lithological and petrophysical description of a field. This is evidenced by huge sums spent on real time MWD/LWD tools, broadband services, wireline logging tools, etc. However, a lot more needs to be done to harness quality data for future workover and or abandonment operations where data being relied on is data that must have been entered decades ago and costs and time spent are critically linked to already known and certified information. In some cases, data relied on has been migrated across different data management platforms, during which relevant data might have been lost, mis-interpreted or mis-placed. Another common cause of wrong data is improperly documented well intervention operations which have been done in such a short time, that there is no pressure to document the operation properly. This leads to confusion over simple issues such as what depth a plug was set, or what junk was left in hole. The relative lack of emphasis on this type of data quality has led to high costs of workover and abandonment operations. In some cases, well control incidents and process safety incidents have arisen. This paper looks at over 20 workover operations carried out in a span of 10 years. An analysis is done on the wells’ original timeline of operation. The data management system is generally analyzed and a categorization of issues experienced during the workover operations is outlined. Bottlenecks in data management are defined and solutions currently being implemented to manage these problems are listed as recommended good practices.


2006 ◽  
Author(s):  
Sivaraman Naganathan ◽  
Pan You Li ◽  
Luo Hui Hong ◽  
Abdul Mageed Sharara

Sign in / Sign up

Export Citation Format

Share Document