Mathematical Modeling of Drilling Operations by Use of Nitrogen-Enriched Mud: A Case Study by Use of a Recorded Drilling Data-Set

2014 ◽  
Vol 29 (04) ◽  
pp. 438-453
Author(s):  
Eric Cayeux ◽  
Richard Kucs ◽  
Nick Gibson
Author(s):  
Michael W. Pratt ◽  
M. Kyle Matsuba

Chapter 7 begins with an overview of Erikson’s ideas about intimacy and its place in the life cycle, followed by a summary of Bowlby and Ainsworth’s attachment theory framework and its relation to family development. The authors review existing longitudinal research on the development of family relationships in adolescence and emerging adulthood, focusing on evidence with regard to links to McAdams and Pals’ personality model. They discuss the evidence, both questionnaire and narrative, from the Futures Study data set on family relationships, including emerging adults’ relations with parents and, separately, with grandparents, as well as their anticipations of their own parenthood. As a way of illustrating the key personality concepts from this family chapter, the authors end with a case study of Jane Fonda in youth and her father, Henry Fonda, to illustrate these issues through the lives of a 20th-century Hollywood dynasty of actors.


Author(s):  
Michael W. Pratt ◽  
M. Kyle Matsuba

Chapter 6 reviews research on the topic of vocational/occupational development in relation to the McAdams and Pals tripartite personality framework of traits, goals, and life stories. Distinctions between types of motivations for the work role (as a job, career, or calling) are particularly highlighted. The authors then turn to research from the Futures Study on work motivations and their links to personality traits, identity, generativity, and the life story, drawing on analyses and quotes from the data set. To illustrate the key concepts from this vocation chapter, the authors end with a case study on Charles Darwin’s pivotal turning point, his round-the-world voyage as naturalist for the HMS Beagle. Darwin was an emerging adult in his 20s at the time, and we highlight the role of this journey as a turning point in his adult vocational development.


2003 ◽  
Vol 42 (05) ◽  
pp. 564-571 ◽  
Author(s):  
M. Schumacher ◽  
E. Graf ◽  
T. Gerds

Summary Objectives: A lack of generally applicable tools for the assessment of predictions for survival data has to be recognized. Prediction error curves based on the Brier score that have been suggested as a sensible approach are illustrated by means of a case study. Methods: The concept of predictions made in terms of conditional survival probabilities given the patient’s covariates is introduced. Such predictions are derived from various statistical models for survival data including artificial neural networks. The idea of how the prediction error of a prognostic classification scheme can be followed over time is illustrated with the data of two studies on the prognosis of node positive breast cancer patients, one of them serving as an independent test data set. Results and Conclusions: The Brier score as a function of time is shown to be a valuable tool for assessing the predictive performance of prognostic classification schemes for survival data incorporating censored observations. Comparison with the prediction based on the pooled Kaplan Meier estimator yields a benchmark value for any classification scheme incorporating patient’s covariate measurements. The problem of an overoptimistic assessment of prediction error caused by data-driven modelling as it is, for example, done with artificial neural nets can be circumvented by an assessment in an independent test data set.


2021 ◽  
Vol 11 (6) ◽  
pp. 2743-2761
Author(s):  
Caetano P. S. Andrade ◽  
J. Luis Saavedra ◽  
Andrzej Tunkiel ◽  
Dan Sui

AbstractDirectional drilling is a common and essential procedure of major extended reach drilling operations. With the development of directional drilling technologies, the percentage of recoverable oil production has increased. However, its challenges, like real-time bit steering, directional drilling tools selection and control, are main barriers leading to low drilling efficiency and high nonproductive time. The fact inspires this study. Our work aims to contribute to the better understanding of directional drilling, more specifically regarding rotary steerable system (RSS) technology. For instance, finding the solutions of the technological challenges involved in RSSs, such as bit steering control, bit position calculation and bit speed estimation, is the main considerations of our study. Classical definitions from fundamental physics including Newton’s third law, beam bending analysis, bit force analysis, rate of penetration (ROP) modeling are employed to estimate bit position and then conduct RSS control to steer the bit accordingly. The results are illustrated in case study with the consideration of the 2D and 3D wellbore scenarios.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2013 ◽  
Vol 39 (1) ◽  
pp. 105-118
Author(s):  
Jacek Kurnatowski

Abstract Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. F25-F34 ◽  
Author(s):  
Benoit Tournerie ◽  
Michel Chouteau ◽  
Denis Marcotte

We present and test a new method to correct for the static shift affecting magnetotelluric (MT) apparent resistivity sounding curves. We use geostatistical analysis of apparent resistivity and phase data for selected periods. For each period, we first estimate and model the experimental variograms and cross variogram between phase and apparent resistivity. We then use the geostatistical model to estimate, by cokriging, the corrected apparent resistivities using the measured phases and apparent resistivities. The static shift factor is obtained as the difference between the logarithm of the corrected and measured apparent resistivities. We retain as final static shift estimates the ones for the period displaying the best correlation with the estimates at all periods. We present a 3D synthetic case study showing that the static shift is retrieved quite precisely when the static shift factors are uniformly distributed around zero. If the static shift distribution has a nonzero mean, we obtained best results when an apparent resistivity data subset can be identified a priori as unaffected by static shift and cokriging is done using only this subset. The method has been successfully tested on the synthetic COPROD-2S2 2D MT data set and on a 3D-survey data set from Las Cañadas Caldera (Tenerife, Canary Islands) severely affected by static shift.


2010 ◽  
Vol 26-28 ◽  
pp. 620-624 ◽  
Author(s):  
Zhan Wei Du ◽  
Yong Jian Yang ◽  
Yong Xiong Sun ◽  
Chi Jun Zhang ◽  
Tuan Liang Li

This paper presents a modified Ant Colony Algorithm(ACA) called route-update ant colony algorithm(RUACA). The research attention is focused on improving the computational efficiency in the TSP problem. A new impact factor is introduced and proved to be effective for reducing the convergence time in the RUACA performance. In order to assess the RUACA performance, a simply supported data set of cities, which was taken as the source data in previous research using traditional ACA and genetic algorithm(GA), is chosen as a benchmark case study. Comparing with the ACA and GA results, it is shown that the presented RUACA has successfully solved the TSP problem. The results of the proposed algorithm are found to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document