Experimental Study for Enhancing Heavy Oil Recovery by Nanofluid Followed by Steam Flooding NFSF

Author(s):  
Osamah Alomair ◽  
Abdullah Alajmi
2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


2017 ◽  
Author(s):  
Zhuangzhuang Wang ◽  
Zhaomin Li ◽  
Teng Lu ◽  
Qingwang Yuan ◽  
Jianping Yang ◽  
...  

2014 ◽  
Vol 577 ◽  
pp. 523-526 ◽  
Author(s):  
Meng Meng Ren ◽  
Shu Zhong Wang ◽  
Li Li Qian ◽  
Yan Hui Li

High-pressure direct-fired steam-gas generator (HDSG) is to produce multiplex thermal fluid (contains water, CO2, N2 etc.) through efficient direct-contact heat transfer, which would utilize the flue gas heat and reduce the gas emission caused by ordinary boiler. Furthermore, the multiplex thermal fluid can promote the heavy oil recovery by both steam flooding and miscible flooding. This paper introduced three kinds of HDSG: pressurized submerged combustion vaporization (PSCV), multiplex thermal fluid generator and supercritical hydrothermal combustor, which are different in work pressure and method of mixing water and flue gas. Then, we discussed the economic efficiency of HDSG used for heavy oil recovery and concluded that although the pressurization of fuel and oxygen would cost as much as the energy saved by utilizing the flue gas heat, using HDSG for heavy oil recovery has other incalculable benefits such as miscible flooding, waste water treatment and reduction of heat loss through injection well. Finally, we indicated that supercritical hydrothermal combustor will be the trendy of HDSG and pointed out the future research should be carried out on the heat and mass transfer characteristic of the combustion field when water presents and the combustion stability and completeness when pressure increases.


Sign in / Sign up

Export Citation Format

Share Document