In-Situ Catalytic Aquathermolysis Combined with Geomechanical Dilation to Enhance Thermal Heavy-Oil Production

Author(s):  
Yuxing Fan ◽  
Xinge Sun ◽  
Xing Mai ◽  
Bin Xu ◽  
Mingzhe Dong ◽  
...  
2016 ◽  
Author(s):  
Ayman R. Al-Nakhli ◽  
Luai A. Sukkar ◽  
James Arukhe ◽  
Abddulrahman Mulhem ◽  
Abdelaziz Mohannad ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 1428-1432 ◽  
Author(s):  
Wen Long Qin ◽  
Zeng Li Xiao

The aquathermolysis of Shengli heavy oil during steam stimulation was studied by using a new oil-soluble catalyst for the reaction in this paper. The laboratory experiment shows that the viscosity reduction ratio of heavy oil is over 75% at the circumstances of 200°C, 24 hs, 0.3 % catalyst solution. The viscosity of upgraded heavy oil is changed from 25306mPa•s to 6175mPa•s at 50°C. The chemical and physical properties of heavy oil both before and after reaction were studied by using column chromatography (CC) analysis and elemental analysis (EL). The percentage of saturated hydrocarbon、aromatic hydrocarbon and H/C increased, and resin、asphalt and the amount of element of S,O and N decreased after the aquathermolysis. The changes of the composition and structure of the heavy oil can lead to the viscosity reduction and the improvement the quality of heavy oil. The results are very useful for the popularization and application of the new technology for the in situ upgrading of heavy oil by aquathermolysis.


2019 ◽  
Vol 16 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Ming Chen ◽  
Chen Li ◽  
Guo-Rui Li ◽  
Yan-Ling Chen ◽  
Cheng-Gang Zhou

2014 ◽  
Vol 79 (6) ◽  
pp. 391-397
Author(s):  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Chanmoly Or ◽  
Yuta Yoshioka ◽  
Junpei Kumasaka ◽  
...  

2014 ◽  
Vol 17 (03) ◽  
pp. 355-364 ◽  
Author(s):  
Yousef Hamedi-Shokrlu ◽  
Tayfun Babadagli

Summary The effect of nickel nanoparticles on in-situ upgrading of heavy oil (HO) during aquathermolysis and the effect of this process on the recovery through cyclic steam injection were studied. High-temperature experiments were conducted with a benchtop reactor to study the kinetics of the reactions among oil, water, and sandstones in the presence and absence of the nickel nanoparticles. Eighteen experiments were conducted at three different temperatures and at three different lengths of time, and the evolved hydrogen sulfide during the reaction was analyzed. The kinetic analysis showed that nickel nanoparticles reduce the activation energy of the reactions corresponding to the generation of hydrogen sulfide by approximately 50%. This reaction was the breakage of C-S bonds in the organosulfur compounds of the HO. The maximal catalysis effect was observed to be at a temperature of approximately 270°C. Also, the simulated-distillation gas-chromatography (GC) analysis of the oil sample, after the aquathermolysis reactions, confirmed the catalysis effect of nickel nanoparticles. According to this analysis, by catalytic process, the concentration of the components lighter than C30 increased whereas the concentration of heavier components decreased. Next, the effect of the catalytic aquathermolysis on the recovery factor of the steam-stimulation technique was studied. The stimulation experiments consisted of three injection/soaking/production phases. The results showed that the nickel nanoparticles increased the recovery factor by approximately 22% when the nanoparticles were injected with a cationic surfactant and xanthan-gum polymer. This increase of recovery was approximately 7% more than that of the experiment conducted with the surfactant and polymer only.


2021 ◽  
Vol 343 ◽  
pp. 09009
Author(s):  
Gheorghe Branoiu ◽  
Florinel Dinu ◽  
Maria Stoicescu ◽  
Iuliana Ghetiu ◽  
Doru Stoianovici

Thermal oil recovery is a special technique belonging to Enhanced Oil Recovery (EOR) methods and includes steam flooding, cyclic steam stimulation, and in-situ combustion (fire flooding) applied especially in the heavy oil reservoirs. Starting 1970 in-situ combustion (ISC) process has been successfully applied continuously in the Suplacu de Barcau oil field, currently this one representing the most important reservoir operated by ISC in the world. Suplacu de Barcau field is a shallow clastic Pliocene, heavy oil reservoir, located in the North-Western Romania and geologically belonging to Eastern Pannonian Basin. The ISC process are operated using a linear combustion front propagated downstructure. The maximum oil production was recorded in 1985 when the total air injection rate has reached maximum values. Cyclic steam stimulation has been continuously applied as support for the ISC process and it had a significant contribution in the oil production rates. Nowadays the oil recovery factor it’s over 55 percent but significant potential has left. In the paper are presented the important moments in the life-time production of the oil field, such as production history, monitoring of the combustion process, technical challenges and their solving solutions, and scientific achievements revealed by many studies performed on the impact of the ISC process in the oil reservoir.


Sign in / Sign up

Export Citation Format

Share Document