Guidelines for the Environmental Monitoring of Oil and Gas Industry in Italy: Seismic, Ground Deformation and Reservoir Pressure Measurements

Author(s):  
P. Macini ◽  
E. N. Mesini ◽  
I. Antoncecchi ◽  
F. Terlizzese
2017 ◽  
Vol 13 (4) ◽  
pp. 797-799
Author(s):  
Delina Lyon ◽  
Koen Bröker ◽  
Ray Valente ◽  
Nicolas Tsesmetzis

2021 ◽  
Author(s):  
Merit P. Ekeregbe

Abstract In an era where cost is a significant component of decision making, every possibility of reducing operational cost in the Oil and Gas industry is a welcome development. The volatile nature of the Oil market creates uncertainty in the industry. One way to manage this uncertainty is by the ability to predict and optimize our operations to reduce all of our cost elements. When cost is planned and predicted as accurately as possible, the operation optimizations can be managed efficiently. Practically, all new drills require CT unloading of the completion or kill fluids to allow the natural flow of the wells. Hitherto, there is no mathematical model that combines information from one of the wells in an unloading dual completion project that can be used to aid decision-making in the other well for the same unloading project and thereby result in an effective cost-saving. Deploying the mathematical model of cost element prediction and optimization can minimize operational unloading costs. The two strings of the dual completion flow from different reservoirs. Still, the link between the two drainages post completion is the kill fluid density, and can aid in cost estimation for optimum benefit. The lesson learned or data acquired from the lifting of the slave reservoir string can be optimized to effectively and efficiently lift the master reservoir string. The decision of first unloading the slave reservoir string is critical for correct prediction and optimization of the ultimate cost. The mathematical model was able to predict the consumable cost elements such as the gallon of nitrogen and time that may be spent on the long string from the correlative analysis of the short string. The more energy is required for unloading the short string and it is the more critical well than the long string because it is the slave string since no consideration as such is given to it when beneficiating the kill fluid to target the long string reservoir pressure with a certain safety overbalance. The rule for the mud weight or the weight of the kill fluid is the highest depth with highest reservoir pressure which is the sand on the long string. With the data from the short string and upper sand reservoir, the lift depth and unloading operation can be optimized to save cost. The short string will incur the higher cost and as such should be lifted last and the optimization can be done with the factor of the LS.


Author(s):  
Andre Albert Sahetapy Engel ◽  
Rachmat Sudibjo ◽  
Muhammad Taufiq Fathaddin

<p>The decline in production from of a field is the common problem in the oil and gas industry. One of the causes of the decrease in production is the decline of reservoir pressure. Based on the analisis result, it was found that SNP field had a weak water drive. The most dominant drive of the field was fluid expansion. In order to reduce the problem, a reservoir pressure maintenance effort was required by injecting water. In this research, the effect of water injection to reservoir pressure and cumulative production was analyzed. From the evaluation result, it was found that the existing inejection performance using one injection well to Zones A and B was not optimum. Because, the recovery factor was predicted to 29.11% only.By activating the four injection wells, the recoverty factor could be increase to 31.43%.</p>


2012 ◽  
Author(s):  
Marie-Charlotte Alboussicre ◽  
Francois Galgani ◽  
Benjamin Kampala ◽  
Sophie Canovas ◽  
Laurent Cazes ◽  
...  

2012 ◽  
Author(s):  
Andrew H. Glickman ◽  
Jacques Mine ◽  
Ingunn Nilssen ◽  
Einar Lystad ◽  
Abigail Findlay ◽  
...  

2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

Sign in / Sign up

Export Citation Format

Share Document