Cost Element Modelling, Prediction and Optimization in a Dual-Completion Well During a Coiled Tubing Unloading Operation

2021 ◽  
Author(s):  
Merit P. Ekeregbe

Abstract In an era where cost is a significant component of decision making, every possibility of reducing operational cost in the Oil and Gas industry is a welcome development. The volatile nature of the Oil market creates uncertainty in the industry. One way to manage this uncertainty is by the ability to predict and optimize our operations to reduce all of our cost elements. When cost is planned and predicted as accurately as possible, the operation optimizations can be managed efficiently. Practically, all new drills require CT unloading of the completion or kill fluids to allow the natural flow of the wells. Hitherto, there is no mathematical model that combines information from one of the wells in an unloading dual completion project that can be used to aid decision-making in the other well for the same unloading project and thereby result in an effective cost-saving. Deploying the mathematical model of cost element prediction and optimization can minimize operational unloading costs. The two strings of the dual completion flow from different reservoirs. Still, the link between the two drainages post completion is the kill fluid density, and can aid in cost estimation for optimum benefit. The lesson learned or data acquired from the lifting of the slave reservoir string can be optimized to effectively and efficiently lift the master reservoir string. The decision of first unloading the slave reservoir string is critical for correct prediction and optimization of the ultimate cost. The mathematical model was able to predict the consumable cost elements such as the gallon of nitrogen and time that may be spent on the long string from the correlative analysis of the short string. The more energy is required for unloading the short string and it is the more critical well than the long string because it is the slave string since no consideration as such is given to it when beneficiating the kill fluid to target the long string reservoir pressure with a certain safety overbalance. The rule for the mud weight or the weight of the kill fluid is the highest depth with highest reservoir pressure which is the sand on the long string. With the data from the short string and upper sand reservoir, the lift depth and unloading operation can be optimized to save cost. The short string will incur the higher cost and as such should be lifted last and the optimization can be done with the factor of the LS.

2018 ◽  
Vol 224 ◽  
pp. 04022 ◽  
Author(s):  
Rail Nasibullin ◽  
Sergey Valeyev ◽  
Ainur Galeyev

To protect the technological furnaces of the oil and gas industry from the penetration into their combustion zone combustible gases that are accidentally released at the production site, steam curtains are used. In the open press, there are practically no methods that allow to evaluate the efficiency of steam curtains, so the solution of this issue seems to be topical. In this paper, we checked the adequacy of the mathematical model developed by the authors of this article. This model describes the operation of the curtain, the movement of the vapor-gas cloud in space, and the scattering of the cloud by the curtain. The verification was carried out by comparing the results of the simulation with the results of laboratory experiments of third-party authors.


2021 ◽  
Author(s):  
Risal Rahman ◽  
Reyhan Hidayat ◽  
Pratika Siamsyah Kurniawati ◽  
Rantoe Marindha ◽  
Gerardus Putra Pancawisna ◽  
...  

Abstract Nowadays oil and gas industry are encouraging the independents and majors to take a fresh look at the technology and concepts required to develop marginal shallow water fields using a minimal platform approach. Innovation on well intervention means (lighter, smaller and less footprint) that fit for Offshore Minimalist Platform (OMP) is needed, including optimizing time and cost during well intervention activities in OMP. To achieve the objectives, well intervention innovation and technology are the main focuses. Intervention activities commonly done on campaign basis with several units (slickline, wireline, coiled tubing, testing) shall be integrated in a safe manner. The approach of integration shall signify these points:Identifying potential jobs in OMP to be done by well intervention methodsIdentifying necessary well intervention means and methods to support the jobs (combo unit, micro coil, hazardous zone redefinition, remote operation)Creating project planning and schedulingPerforming site visit and risk assessmentImplementation and operational executionEvaluation of overall project execution result The following results were obtained after the integration performed:No major safety issues during operationExemplary method and risk assessment for well intervention activities which can be applied for next campaignsTrials on well intervention new units and method (combo unit, micro coil, hazardous zone redefinition, remote operation), were safely performed with some optimization100% success ratio60% on supply boat arrangement35% efficiency in N2 consumption for CT operation45% efficiency in diesel consumption20% - 40% efficiency in Rig Up Time28% less in Job Cost compared to conventional unit These innovations are proven as reliable method to answer OMP challenges with main advantages on footprint and cost optimization. Through this paper, we would like to share lucrative well intervention breakthrough and innovation in OMP with measurable milestones.


2007 ◽  
Vol 47 (1) ◽  
pp. 309 ◽  
Author(s):  
S.I. Mackie ◽  
S.H. Begg ◽  
C. Smith ◽  
M.B. Welsh

Business underperformance in the upstream oil and gas industry, and the failure of many decisions to return expected results, has led to a growing interest over the past few years in understanding the impacts of decisionmaking tools and processes and their relationship to decision outcomes. A primary observation is that different decision types require different decision-making approaches to achieve optimal outcomes.Optimal decision making relies on understanding the types of decisions being made and tailoring the type of decision with the appropriate tools and processes. Yet the industry lacks both a definition of decision types and any guidelines as to what tools and processes should be used for what decisions types. We argue that maximising the chances of a good outcome in real-world decisions requires the implementation of such tailoring.


2020 ◽  
Vol 2020 (1) ◽  
pp. 4-13
Author(s):  
M.I. Kaplin ◽  
◽  
V.M. Makarov ◽  
M.O. Perov ◽  
◽  
...  

Author(s):  
Christopher Boachie

The energy system studies include a wide range of issues from short term to long term horizons. The decision making chain is fed by input parameters which are usually subject to uncertainties. The art of dealing with uncertainties has been developed in various directions and has recently become a focal point of interest. Decision making is certainly the most important task of Oil and Gas managers and it is often a very difficult one. The purpose of this chapter is to review and investigate the decision making processes under risk and uncertainty of Oil and Gas companies. Questionnaires were distributed to eight Oil and Gas companies in Ghana to solicit their view on decision making under risk and uncertainty. Results indicate that most managers use Maximax, Minimax Regret and Expected Value when making decisions under risk and uncertainty.


2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


Sign in / Sign up

Export Citation Format

Share Document