Investigation of the Interaction of Surfactant at Variable Salinity with Permian Basin Rock Samples: Completion Enhancement and Application for Enhanced Oil Recovery

2020 ◽  
Vol 35 (01) ◽  
pp. 100-113 ◽  
Author(s):  
Kang Han Park ◽  
David S. Schechter
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1077
Author(s):  
Tinuola Udoh ◽  
Jan Vinogradov

In this paper, a thorough experimental investigation of enhanced oil recovery via controlled salinity-biosurfactant injection under typical reservoir temperature conditions is reported for the first time. Sixteen core flooding experiments were carried out with four displacing fluids in carbonate rock samples and the improved oil recovery was investigated in secondary, tertiary and quaternary injection modes. The temperature effect on oil recovery during floodings was compared at two temperatures (23 °C and 70 °C) on similar rock samples and fluids using two types of biosurfactants: GreenZyme® and rhamnolipids. The results of this study show that injection of controlled salinity brine (CSB) and controlled salinity biosurfactant brine (CSBSB) improve oil recovery relative to injection of high salinity formation brine (FMB) at both high and low temperatures. At 23 °C, CSBSB improved oil recovery by 15–17% OIIP compared with conventional FMB injection, and by 4–8% OIIP compared with CSB injection. At 70 °C, the injection of CSBSB increased oil recovery by 10–13% OIIP compared with injection of FMB, and by 2–6% OIIP compared with CSB injection. Furthermore, increase in the system temperature generally resulted in increased oil recovery, irrespective of the type of the injection brine. The results of this study have demonstrated for the first time the enhanced oil recovery potential of combined controlled salinity brine and biosurfactant applications at temperature relevant to hydrocarbon reservoirs. The results of this study are significant for the design of controlled salinity and biosurfactant flooding in carbonate reservoirs.


2020 ◽  
Author(s):  
Reza Ganjdanesh ◽  
Esmail Eltahan ◽  
Kamy Sepehrnoori ◽  
Hunter Drozd ◽  
Raymond Ambrose

Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Sign in / Sign up

Export Citation Format

Share Document