An Assessment of Gate-to-Gate Environmental Life Cycle Performance of Water-Alternating-Gas CO2-Enhanced Oil Recovery in the Permian Basin

2010 ◽  
Author(s):  
Robert M. Dilmore
2013 ◽  
Author(s):  
Timothy J. Skone ◽  
James Littlefield ◽  
Joe Marriott ◽  
Greg Cooney

2013 ◽  
Author(s):  
Greg Cooney ◽  
James Littlefield ◽  
Joe Marriott ◽  
Matt Jamieson ◽  
Robert E James III PhD ◽  
...  

2008 ◽  
Vol 16 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Edgar G. Hertwich ◽  
Martin Aaberg ◽  
Bhawna Singh ◽  
Anders H. Strømman

2021 ◽  
Vol 11 (3) ◽  
pp. 1461-1474
Author(s):  
O. A. Olabode ◽  
V. O. Ogbebor ◽  
E. O. Onyeka ◽  
B. C. Felix

AbstractOil rim reservoirs are characterised with a small thickness relative to their overlying gas caps and underlying aquifers and the development these reservoirs are planned very carefully in order to avoid gas and water coning and maximise oil production. Studies have shown low oil recoveries from water and gas injection, and while foam and water alternating gas injections resulted in positive recoveries, it is viewed that an option of an application of chemical enhanced oil recovery option would be preferable. This paper focuses on the application of chemical enhanced oil recovery to improve production from an oil rim reservoir in Niger Delta. Using Eclipse black oil simulator, the effects of surfactant concentration and injection time and surfactant alternating gas are studied on overall oil recovery. Surfactant injections at start and middle of production resulted in a 3.7 MMstb and 3.6 MMstb at surfactant concentration of 1% vol, respectively. This amounted to a 6.6% and 6.5% increment over the base case of no injection. A case study of surfactant alternating gas at the middle of production gave an oil recovery estimate of 10.7%.


Fuel ◽  
2017 ◽  
Vol 190 ◽  
pp. 253-259 ◽  
Author(s):  
Youguo Yan ◽  
Chuanyong Li ◽  
Zihan Dong ◽  
Timing Fang ◽  
Baojiang Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document