Air Filtration - The Dark Horse of Gas Turbine Performance

2018 ◽  
Author(s):  
Shahin Abdel Samad Shahin Elsawy
Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Gas turbine performance has been analyzed for a fleet of GE LM2500 engines at two Statoil offshore fields in the North Sea. Both generator drive engines and compressor driver engines have been analyzed, covering both the LM2500 base and plus configurations, as well as the SAC and DLE combustor configurations. Several of the compressor drive engines are running at peak load (T5.4 control), and the production rate is thus limited to the available power from these engines. The majority of the engines discussed run continuously without redundancy, implying that gas turbine uptime is critical for the field’s production and economy. Previous studies and operational experience have emphasized that the two key factors to minimize compressor fouling are the optimum designs of the inlet air filtration system and the water wash system. An optimized inlet air filtration system, in combination with daily online water wash (at high water-to-air ratio), are the key factors to achieve successful operation at longer intervals between offline washes and higher average engine performance. Operational experience has documented that the main gas turbine recoverable deterioration is linked to the compressor section. The main performance parameter when monitoring compressor fouling is the gas turbine compressor efficiency. Previous studies have indicated that inlet depression (air mass flow at compressor inlet) is a better parameter when monitoring compressor fouling, whereas instrumentation for inlet depression is very seldom implemented on offshore gas turbine applications. The main challenge when analyzing compressor efficiency (uncorrected) is the large variation in efficiency during the periods between offline washes, mainly due to operation at various engine loads and ambient conditions. Understanding the gas turbine performance deterioration is of vital importance. Trending of the deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors for attaining reliable results in the performance analysis. A correction methodology for compressor efficiency has been developed, which improves the long term trend data for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms, as well as gas turbine performance and response.


2021 ◽  
Author(s):  
Denis Balzamov ◽  
Veronika Bronskaya ◽  
Olga Soloveva ◽  
Gulnaz Khabibullina ◽  
Alsu Lubnina ◽  
...  

2021 ◽  
Vol 1107 (1) ◽  
pp. 012025
Author(s):  
A. El-Suleiman ◽  
O.D. Samuel ◽  
S.T. Amosun ◽  
I. Emovon ◽  
F. I. Ashiedu ◽  
...  

Author(s):  
Joachim Kurzke

Precise simulations of gas turbine performance cannot be done without component maps. In the early days of a new project one often has to use scaled maps of similar machines. Alternatively one can calculate the component partload characteristics provided that the many details needed for such an exercise are available. In a later stage often rig tests will be done to get detailed information about the behavior of the compressors respectively turbines. Performance calculation programs usually require the map data in a specific format. To produce this format needs some preprocessing. Measured data cannot be used directly because they show a scatter and they are not evenly distributed over the range of interest. Due to limitations in the test equipment often there is lack of data for very low and very high speed. With the help of a specialized drawing program available on a PC one can easily eliminate the scatter in the data and also inter- and extrapolate additional lines of constant corrected speed. Many graphs showing both the measured data and the lines passing through the data as a function of physically meaningful parameters allow to check whether the result makes sense or not. The extrapolation of compressor maps toward very low speed, as required for the calculation of starting, idle and windmilling performance calculations, is discussed in some detail. Instead of true measured data one can use data read from maps published in open literature. The program is also an excellent tool for checking and extending component maps one has derived from sparse information about a gas turbine to be simulated.


Author(s):  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination consists of the assessment of the modification, due to deterioration and fault, of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as a couple of nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling and turbine erosion, occurring in one or more stages simultaneously) are reported in this paper. Moreover, compressor and turbine maps obtained through a stage-by-stage procedure are compared to the ones obtained by means of map scaling.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Sign in / Sign up

Export Citation Format

Share Document