Influence of Blade Deterioration on Compressor and Turbine Performance

Author(s):  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination consists of the assessment of the modification, due to deterioration and fault, of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as a couple of nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling and turbine erosion, occurring in one or more stages simultaneously) are reported in this paper. Moreover, compressor and turbine maps obtained through a stage-by-stage procedure are compared to the ones obtained by means of map scaling.

Author(s):  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini

Gas turbine operating state determination consists of the assessment of the modification due to deterioration and fault of performance and geometric data characterizing machine components. One of the main effects of deterioration and fault is the modification of compressor and turbine performance maps. Since detailed information about actual modification of component maps is usually unavailable, many authors simulate the effects of deterioration and fault by a simple scaling of the map itself. In this paper, stage-by-stage models of the compressor and the turbine are used in order to assess the actual modification of compressor and turbine performance maps due to blade deterioration. The compressor is modeled by using generalized performance curves of each stage matched by means of a stage-stacking procedure. Each turbine stage is instead modeled as two nozzles, a fixed one (stator) and a moving one (rotor). The results obtained by simulating some of the most common causes of blade deterioration (i.e., compressor fouling, compressor mechanical damage, turbine fouling, and turbine erosion), occurring in one or more stages simultaneously, are reported in this paper. Moreover, compressor and turbine maps obtained through the stage-by-stage procedure are compared with the ones obtained by means of map scaling. The results show that the values of the scaling factors depend on the corrected rotational speed and on the load. However, since the variation in the scaling factors in the operating region close to the design corrected rotational speed is small, the use of the scaling factor as health indices can be considered acceptable for gas turbine health state determination at full load. Moreover, also the use of scaled maps in order to represent compressor and turbine behavior in deteriorated conditions close to the design corrected rotational speed can be considered acceptable.


Author(s):  
Mohammad R. Aligoodarz ◽  
Mohammad Reza Soleimani Tehrani ◽  
Hadi Karrabi ◽  
Mohammad R. Roshani

Turbo machineries including compressors performance degrades over the period of operation and deviates from design levels due to causes including dust entrance into the compressor, blades mechanical damage, erosion and corrosion. These lead to reduction in compressor performance, efficiency and pressure ratio. Subsequently gas turbine performance is affected since their operation sate is correlated. In this study the numerical investigation of common causes that determine geometric characteristics of a 2-stage centrifugal compressor running in a gas station, including blades fouling and corrosion is performed. 3D Numerical modeling is implemented along with utilization of Shear Stress Transport (SST) turbulence model and independency from the grids is verified.


1994 ◽  
Vol 116 (1) ◽  
pp. 46-52 ◽  
Author(s):  
A. N. Lakshminarasimha ◽  
M. P. Boyce ◽  
C. B. Meher-Homji

The effects of performance deterioration in both land and aircraft gas turbines are presented in this paper. Models for two of the most common causes of deterioration, viz., fouling and erosion, are presented. A stage-stacking procedure, which uses new installed engine field data for compressor map development, is described. The results of the effect of fouling in a powerplant gas turbine and that of erosion in a aircraft gas turbine are presented. Also described are methods of fault threshold quantification and fault matrix simulation. Results of the analyses were found to be consistent with field observations.


Author(s):  
A. N. Lakshminarasimha ◽  
M. P. Boyce ◽  
C. B. Meher-Homji

The effects of performance deterioration in both land and aircraft gas turbines are presented in this paper. Models for two of the most common causes of deterioration viz. fouling and deterioration are presented. A stage stacking procedure which uses new installed engine field data for compressor map development is described. The results of the effect of fouling in a powerplant gas turbine and that of erosion in a aircraft gas turbine are presented. Also described are methods of fault threshold quantification and fault matrix simulation. Results of the analyses were found to be consistent with field observations.


Author(s):  
P. R. Spina

The paper presents a method for gas turbine performance prediction which uses compressor and turbine performance maps obtained by using generalized stage performance curves matched by means of the “stage–stacking” procedure. In particular, the overall multistage compressor performance is predicted using generalized relationships between stage efficiency, pressure coefficient and flow coefficient, while the multistage turbine performance is predicted by modeling each turbine stage by a series of two nozzles, a fixed one (stator) and a moving one (rotor). The characteristic of the proposed method is that the unknown parameters defining the generalized stage performance curves are determined by combining a Cycle Program with the compressor and turbine performance maps obtained using the “stage–stacking” procedure, and by searching for the values of the unknown parameters which better reproduce, by means of the Cycle Program, the overall performance and thermodynamic data measured on a gas turbine.


Author(s):  
Hafiz M Hassan ◽  
Adeel Javed ◽  
Asif H Khoja ◽  
Majid Ali ◽  
Muhammad B Sajid

A clear understanding of the flow characteristics in the older generation of industrial gas turbines operating with silo combustors is important for potential upgrades. Non-uniformities in the form of circumferential and radial variations in internal flow properties can have a significant impact on the gas turbine stage performance and durability. This paper presents a comprehensive study of the underlying internal flow features involved in the advent of non-uniformities from twin-silo combustors and their propagation through a single axial turbine stage of the Siemens v94.2 industrial gas turbine. Results indicate the formation of strong vortical structures alongside large temperature, pressure, velocity, and flow angle deviations that are mostly located in the top and bottom sections of the turbine stage caused by the excessive flow turning in the upstream tandem silo combustors. A favorable validation of the simulated exhaust gas temperature (EGT) profile is also achieved via comparison with the measured data. A drop in isentropic efficiency and power output equivalent to 2.28% points and 2.1 MW, respectively is observed at baseload compared to an ideal straight hot gas path reference case. Furthermore, the analysis of internal flow topography identifies the underperforming turbine blading due to the upstream non-uniformities. The findings not only have implications for the turbine aerothermodynamic design, but also the combustor layout from a repowering perspective.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012025
Author(s):  
A. El-Suleiman ◽  
O.D. Samuel ◽  
S.T. Amosun ◽  
I. Emovon ◽  
F. I. Ashiedu ◽  
...  

Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Mauro Venturini

A reduction of gas turbine maintenance costs, together with the increase in machine availability and the reduction of management costs, is usually expected when gas turbine preventive maintenance is performed in parallel to on-condition maintenance. However, on-condition maintenance requires up-to-date knowledge of the machine health state. The gas turbine health state can be determined by means of Gas Path Analysis (GPA) techniques, which allow the calculation of machine health state indices, starting from measurements taken on the machine. Since the GPA technique makes use of field measurements, the reliability of the diagnostic process also depends on measurement reliability. In this paper, a comprehensive approach for both the measurement validation and health state determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in a natural gas compression plant is presented.


Sign in / Sign up

Export Citation Format

Share Document