The Impact of Gas Modeling in the Numerical Analysis of a Multistage Gas Turbine

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.

Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel/air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at inlet/outlet of each row and total temperature at the turbine exit.


Author(s):  
Andrea Arnone ◽  
Erio Benvenuti

A three-dimensional Navier-Stokes solver has been extended to include multi-row capability. The coupling between the various rows is implemented by means of mixing planes. Those planes are handled by retaining the radial distortions while mass-averaging in the pitch-wise direction. The code is applied to a two-stage, heavy-duty gas turbine at design conditions. A comparison of pitch-averaged quantities between blade rows with preliminary measurements and with through flow analysis is presented along with a discussion of the flow features in terms of secondary flows. Using roughly half a million grid points, an operating condition can be examined in about an hour on a modem supercomputer.


2011 ◽  
Vol 84-85 ◽  
pp. 259-263
Author(s):  
Xun Liu ◽  
Song Tao Wang ◽  
Xun Zhou ◽  
Guo Tai Feng

In this paper, the trailing edge film cooling flow field of a heavy duty gas turbine cascade has been studied by central difference scheme and multi-block grid technique. The research is based on the three-dimensional N-S equation solver. By way of analysis of the temperature field, the distribution of profile pressure, and the distribution of film-cooling adiabatic effectiveness in the region of trailing edge with different cool air injection mass and different angles, it is found that the impact on the film-cooling adiabatic effectiveness is slightly by changing the injection mass. The distribution of profile pressure dropped intensely at the pressure side near the injection holes line with the large mass cooling air. The cooling effect is good in the region of trailing edge while the injection air is along the direction of stream.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Serena Romano ◽  
Roberto Meloni ◽  
Giovanni Riccio ◽  
Pier Carlo Nassini ◽  
Antonio Andreini

Abstract This paper addresses the impact of natural gas composition on both the operability and emissions of lean premixed gas turbine combustion system. This is an issue of growing interest due to the challenge for gas turbine manufacturers in developing fuel-flexible combustors capable of operating with variable fuel gases while producing very low emissions at the same time. Natural gas contains primarily methane (CH4) but also notable quantities of higher order hydrocarbons such as ethane (C2H6) can also be present. A deep understanding of natural gas combustion is important to obtain the highest combustion efficiency with minimal environmental impact. For this purpose, Large Eddy Simulations of an annular combustor sector equipped with a partially premixed burner are carried out for two different natural gas compositions with and without including the effect of flame strain rate and heat loss resulting in a more adequate description of flame shape, thermal field, and extinction phenomena. Promising results, in terms of NOx, compared against available experimental data, are obtained including these effects on the flame brush modeling, enhancing the fuel-dependency under nonadiabatic condition.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


2020 ◽  
Vol 12 (23) ◽  
pp. 10173
Author(s):  
Vladimíra Michalcová ◽  
Kamila Kotrasová

Numerical simulation of fluid flow and heat or mass transfer phenomenon requires numerical solution of Navier–Stokes and energy-conservation equations, together with the continuity equation. The basic problem of solving general transport equations by the Finite Volume Method (FVM) is the exact calculation of the transport quantity. Numerical or false diffusion is a phenomenon of inserting errors in calculations that threaten the accuracy of the computational solution. The paper compares the physical accuracy of the calculation in the Computational Fluid Dynamics (CFD) code in Ansys Fluent using the offered discretization calculation schemes, methods of solving the gradients of the transport quantity on the cell walls, and the influence of the mesh type. The paper offers possibilities on how to reduce numerical errors. In the calculation area, the sharp boundary of two areas with different temperatures is created in the flow direction. The three-dimensional (3D) stationary flow of the fictitious gas is simulated using FVM so that only advective transfer, in terms of momentum and heat, arises. The subject of the study is to determine the level of numerical diffusion (temperature field scattering) and to evaluate the values of the transport quantity (temperature), which are outside the range of specified boundary conditions at variously set calculation parameters.


Author(s):  
Alejandro Herna´ndez Rossette ◽  
Zdzislaw Mazur C. ◽  
Jesu´s Cordero Guridi ◽  
Eric Chumacero Polanco

As a gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases too and therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used to maintain the blade temperature within the acceptable limits. In this work a multi-block three dimensional Navier-Stokes commercial turbomachinery oriented CFD-code has been used to compute steady state conjugated heat transfer (CHT) on the blade suction and pressure coated sides of a rotating first inter-stage (nozzle and bucket) with cooling holes of a 60 MW Gas turbine. A Spallart Allmaras model was used for modeling the turbulence. Convection and radiation were modeled for a super alloy blade with and without TBC. The CFD simulations were configured with a mesh domain of nozzle and bucket inter-stage in order to predict the fluid parameters at inlet and outlet of bucket for validate with turbine inter-stage parameter data test of gas turbine manufacturer. The effects of blade surface temperature changes were simulated with both configurations coated and uncoated blades.


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


2003 ◽  
Vol 125 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Ali Merchant

The impact of boundary layer aspiration, or suction, on the aerodynamic design and performance of turbomachinery airfoils is discussed in this paper. Aspiration is studied first in the context of a controlled diffusion cascade, where the effect of discrete aspiration on loading levels and profile loss is computationally investigated. Blade design features which are essential in achieving high loading and minimizing the aspiration requirement are described. Design studies of two aspirated compressor stages and an aspirated turbine exit guide vane using three dimensional Navier-Stokes calculations are presented. The calculations show that high loading can be achieved over most of the blade span with a relatively small amount of aspiration. Three dimensional effects close to the endwalls are shown to degrade the performance to varying degrees depending on the loading level.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Sign in / Sign up

Export Citation Format

Share Document