Gas Turbine Fouling Offshore: Correction Methodology Compressor Efficiency

Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Gas turbine performance has been analyzed for a fleet of GE LM2500 engines at two Statoil offshore fields in the North Sea. Both generator drive engines and compressor driver engines have been analyzed, covering both the LM2500 base and plus configurations, as well as the SAC and DLE combustor configurations. Several of the compressor drive engines are running at peak load (T5.4 control), and the production rate is thus limited to the available power from these engines. The majority of the engines discussed run continuously without redundancy, implying that gas turbine uptime is critical for the field’s production and economy. Previous studies and operational experience have emphasized that the two key factors to minimize compressor fouling are the optimum designs of the inlet air filtration system and the water wash system. An optimized inlet air filtration system, in combination with daily online water wash (at high water-to-air ratio), are the key factors to achieve successful operation at longer intervals between offline washes and higher average engine performance. Operational experience has documented that the main gas turbine recoverable deterioration is linked to the compressor section. The main performance parameter when monitoring compressor fouling is the gas turbine compressor efficiency. Previous studies have indicated that inlet depression (air mass flow at compressor inlet) is a better parameter when monitoring compressor fouling, whereas instrumentation for inlet depression is very seldom implemented on offshore gas turbine applications. The main challenge when analyzing compressor efficiency (uncorrected) is the large variation in efficiency during the periods between offline washes, mainly due to operation at various engine loads and ambient conditions. Understanding the gas turbine performance deterioration is of vital importance. Trending of the deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors for attaining reliable results in the performance analysis. A correction methodology for compressor efficiency has been developed, which improves the long term trend data for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms, as well as gas turbine performance and response.

Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


2021 ◽  
Author(s):  
Denis Balzamov ◽  
Veronika Bronskaya ◽  
Olga Soloveva ◽  
Gulnaz Khabibullina ◽  
Alsu Lubnina ◽  
...  

Author(s):  
Elisabet Syverud ◽  
Lars E. Bakken ◽  
Kyrre Langnes ◽  
Frode Bjo̸rna˚s

On-line compressor wash is discussed for a RB211 compressor driver running at peak load at the Statoil Heidrun offshore platform. The oil field’s economy is directly linked to oil production; however, the production rate is limited by driver and gas compressor capacity. From this perspective, the power output and gas turbine uptime become decisive economic factors. The economic potentials related to successful on-line washing are given. This work is based on a series of trials with on-line compressor washing over a two-year period. Results include effect of different on-line washing procedures and washing fluids. The field test campaign has shown no significant improvements with on-line compressor washing at peak load. Understanding the gas turbine performance deterioration is of vital importance. Trending of its deviation from the engine baseline (datum maps) facilitates load-independent monitoring of the gas turbine’s condition. Peak load turbine response to compressor deterioration is analyzed. Instrument resolution and repeatability are key factors that sometimes are more important than absolute accuracy in condition trending. As a result of these analyses, a set of monitoring parameters is suggested for effective diagnostics of compressor degradation in peak load operation. Avenues for further research and development are suggested as our understanding of the deterioration mechanisms at peak load remains incomplete.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

On-line compressor wash for six GE LM2500PE engines at a Statoil North Sea offshore field is analyzed. Three engines are generator drivers whilst three engines are compressor drivers. Two of the compressor drive engines are running at peak load (T5.4 control), hence production rate is limited by the available power from these engines. All the six engines analyzed run continuously without redundancy, hence gas turbine uptime is critical for the field’s production and economy. The performance and operational experience with online wash at different water-to-air ratios and engine loads, as well as economy potentials related to successful on-line washing are given. This work is based on long-term operation with on-line washing, where operational data is collected and performance analyzed, over a 4–5 year period. All engines are operated with four month intervals between maintenance stops, where off-line crank-wash is performed as well as other necessary maintenance and repairs. On-line wash is performed daily between the maintenance stops at full load (i.e. normal operating load for the subject engine). To keep the engine as clean as possible and reduce degradation between maintenance stops, both an effective on-line water wash system as well as effective air intake filter system, are critical factors. The overall target is to maintain high engine performance, and extend the interval between maintenance stops through effective on-line washing. It is of vital importance to understand the gas turbine performance deterioration. The trending of its deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Engine response to water injection at different loads and water-to-air ratios, as well as engine response to compressor deterioration is documented and analyzed. Instrument resolution and repeatability are key factors required in order to obtain reliable performance analysis results. Offshore instrumentation on older installations is often limited to the necessary instruments for machine control/protection, and additional instruments for effective performance monitoring and analysis are often missing or, if installed, have less accuracy. As a result of these analyses, a set of monitoring parameters is proposed for effective diagnosis of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms and of the gas turbine performance and response.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of 11 GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers, and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence, the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence, the gas turbine uptime is critical for the field's production and economy. The performance and operational experience with online water wash at high water-to-air ratio (w.a.r.), as well as successful operation at longer maintenance intervals and higher average engine performance are described. The water-to-air ratio is significantly increased compared to the original equipment manufacturer (OEM) limit (OEM limit is 17 l/min which yields approximately 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (three times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Melissa Wilcox ◽  
Rainer Kurz ◽  
Klaus Brun

An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating environment and the performance goals for the gas turbine. Selection of these systems can be a challenging task. This paper provides a review of the considerations for selecting an inlet filtration system by covering (1) the characteristics of filters and filter systems, (2) a review of the many types of filters, (3) a detailed look at the different environments where the gas turbine can operate, (4) a process for evaluating the site where the gas turbine will be or is installed, and (5) a method to compare various filter system options with life cycle cost analysis.


Author(s):  
Peter T. McGuigan

Contaminants are ever-present in the air. Contaminated air entering a Gas Turbine will damage internal components and bring about a reduction in overall efficiency. The amount of contaminant entering a Gas Turbine, therefore, needs to be minimised. This paper describes recent developments in the understanding of one such contaminant, salt. It describes how salt is produced, how it varies climatically and how it varies from location to location and is presented here in the context of the author’s particular field of competence — air filtration system design. Salt ingestion by a Gas Turbine intake can cause corrosion and, given time, can accumulate on the compressor blades and reduce the aerodynamic efficiency. The removal of salt in the air is therefore of primary concern to all those involved in the design and operation of Gas Turbines. Salt removal systems are manufactured in various guises. The concept, however, remains the same — salt capture upstream of the Compressor stage. The drawback to this method of salt removal is that it results in a decrease in air pressure entering the Compressor and will consequently bring about a decrease in the overall system performance. As the requirement to remove more and more salt contaminant increases, the pressure drop across the method of filtration required to achieve this, increases. The responsibility of the Filtration Engineer is therefore to fully understand the requirements of the Gas Turbine, to understand the balance between pressure drop, salt removal and salt size and, consequently, to design an appropriate filtration system — one fit for purpose. Gas Turbines in the marine environment are generally found at heights less than 50m above sea level. It is this environment (the Marine Boundary Layer) which historically has been difficult to fully quantify. Herein lies the problem for those involved — if the environment is not fully understood how can the proper exploitation of the technologies be achieved? Recent developments, however, have led to a better understanding of salt in the Marine Boundary Layer. This paper describes these recent developments.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics, and (iii) particle-adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors for performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a computational fluid dynamic (CFD) and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of blade and the charge level of electrostatic filters seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics and (iii) particle-adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors to performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a CFD and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of the blade and the charge level of the electrostatic seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.


Author(s):  
S. Brusca ◽  
R. Lanzafame

It is well known that gas turbine performance is quite influenced by ambient conditions such as pressure, air temperature and relative humidity. This paper deals with the effects of ambient conditions on performance of gas turbine fired with syngas. A mathematical model of the engine has been implemented within GateCycle workspace and using experimental data, it has been finely tuned and tested. Results analysis showed that it is able to simulate engine running in on–design and off–design conditions (maximum relative error is about 1%). Thus, gas turbine running simulations depending on ambient temperature and relative humidity have been carried out. Results analysis showed that at high air temperatures (higher then the one corresponding to maximum IGV opening) performance reduction occur. On the contrary, high values of relative humidity allow to reduce power losses in the same temperature range. In conclusion, the developed mathematical model is able to simulate gas turbine running with low relative errors. So that, it could be used in order to optimise engine performance at the ambient conditions that occur for the site of the IGCC Complex in which gas turbine is integrated.


Sign in / Sign up

Export Citation Format

Share Document