A Feasibility Study of Hybrid Thermal and Chemical EOR Methods in a Low-Permeability Carbonate Heavy Oil Reservoir with Strong Aquifer Drive

Author(s):  
Mohammed Taha Al-Murayri ◽  
Eman Hadad Fadli ◽  
Fawziya Mohammad Al-Shati ◽  
Ali Qubian ◽  
Zhitao Li ◽  
...  
Author(s):  
Hongda Hao ◽  
Jirui Hou ◽  
Fenglan Zhao ◽  
Handong Huang ◽  
Zhixing Wang ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaopeng Cao ◽  
Zupeng Liu ◽  
Yong Yang ◽  
Shiming Zhang ◽  
Yahui Bu ◽  
...  

Deep low permeability extra heavy oil reservoir has the characteristics of high formation pressure, high crude oil viscosity, and low permeability. Conventional steam injection thermal recovery has poor viscosity reduction performance and low productivity of a single well, which makes it difficult to develop this type of heavy oil reservoir. In this paper, core flooding experiment and microvisualization equipment were used to study the mechanism of improving the recovery of deep extra heavy oil by using water-soluble viscosity reducer; the realization of water-soluble viscosity reducer in numerical simulation was achieved by using nonlinear mixing rule; the reservoir numerical simulation model of water-soluble viscosity reducer displacement in test well group was established to optimize the development technical parameter of water-soluble viscosity reducer. The results show that compared with waterflooding, the oil displacement efficiency of water-soluble viscosity reducer is increased by 12.7%; water-soluble viscosity reducer can effectively reduce the viscosity of extra heavy oil, under the same temperature and permeability, the higher the concentration of viscosity reducer, the better the viscosity reduction effect, and the smaller the pressure gradient required at the same injection rate; the main mechanism of water-soluble viscosity reducer for enhancing oil recovery is to form oil in water emulsion, which can reduce the viscosity and interfacial tension of crude oil and reduce the residual oil saturation; in the pilot well group, the optimized injection concentration of water-soluble viscosity reducer is 3%, and the optimal injection amount of water-soluble viscosity reducer solution is 50 t/d; water-soluble viscosity reducer displacement was implemented in the pilot well group, the average daily oil of well group was increased from 1.8 t/d to 7.34 t/d, and the pilot well group has achieved good development performance.


Sign in / Sign up

Export Citation Format

Share Document