Experimental Study of Hydraulic Fracture Geometry Initiated From Horizontal Wells

Author(s):  
W. El Rabaa
2015 ◽  
Vol 18 (03) ◽  
pp. 356-374 ◽  
Author(s):  
M.. Heidari Sureshjani ◽  
C. R. Clarkson

Summary Analytical methods for analyzing and forecasting production from multifractured horizontal wells completed in unconventional reservoirs are in their infancy. Among the difficulties in modeling such systems is the incorporation of fracture-network complexity as a result of the hydraulic-fracturing process. Along with a primary propped-hydraulic-fracture network, a secondary fracture network, which may or may not contain proppant, may be activated during the stimulation process, creating a “branched-fracture” network. These secondary fractures can be the result of reactivation of healed natural fractures, for example. In the current work, we develop a fully analytical enhanced-fracture-region (EFR) model for analyzing and forecasting multifractured horizontal wells with complex fracture geometry that is more-general, -rigorous, and -flexible than those previously developed. Specifically, our new model allows nonsymmetric placement of a well within its area of drainage, to reflect unequal horizontal-lateral spacing; this is a very real scenario observed in the field, particularly for the external laterals on a pad. The solutions also can be reduced to be applicable for homogeneous systems without branch fractures. In addition to the general EFR solution, we have provided local solutions that can be used to analyze individual flow regimes in sequence. We provide practical examples of the application (and sometimes misapplication) of local solutions by use of simulated and field cases. One important observation is that a negative intercept obtained from a straight line drawn through data on a square-root-of-time plot (commonly used to analyze transient linear flow) may indicate EFR behavior, but this straight line should not be interpreted as linear flow because it represents transitional flow from one linear-flow period to another. Our general EFR solution therefore provides a powerful tool to improve both forecasting and flow-regime interpretation for hydraulic-fracture/reservoir characterization.


2021 ◽  
Author(s):  
Shubham Mishra ◽  
Vinil Reddy

Abstract Unconventional resources, which are typically characterized by poor porosity and permeability are being economically developed only after the introduction of hydraulic fracturing (HF) technology, which is required to stimulate the hydrocarbon flow from these impermeable/tight reservoir rocks. Since 1960, HF has been extensively used in the industry. HF is the process of (1) injecting viscous gel fluids through the wellbore into the subterranean hydrocarbon formation, at high pressures sufficient enough to exceed tensile strength of the rock and hydraulically induce cracks/fractures (2) followed by injecting proppant-laden fluid into the open fractures and packing up the fracture with proppant pack, after the injected fluid leaks off into formation. The resultant proppant pack keeps the induced fracture propped open and thus creates a highly conductive flow path for the hydrocarbon to flow from the far-field subterranean formation into the wellbore. Most the modern wells in unconventional reservoirs are horizontal/near-horizontal wells that are completed with large multiple HF treatments across the entire length of the horizontal wellbore (lateral), to increase the reservoir contact per well. Productivity of these wells is dictated by the stimulated reservoir volume (SRV), which is dependent on the number of fractures and conductive hydraulic fracture surface area of each fracture that is propped open. Therefore, estimation of the hydraulic fracture geometry (HFG) dimensions has become very critical for any unconventional field development. Key dimensions are hydraulic fracture length, height, and orientation, which are required to assess the optimum configuration of fracturing, well completion, and reservoir management strategy to achieve maximum production. Designs can be assessed based on HFG observations, and infill well trajectories, spacing, etc. can be planned for further field development. This workflow proposes a method to estimate and model all or at least two parameters of HFG in predominantly horizontal or nearly horizontal wells by use of interwell electromagnetic recordings. The foundation of this workflow is the difference in salinity, or more precisely resistivity, of the fracturing fluid and the resident fluid (hydrocarbon or formation water). The fracturing fluid is usually significantly less resistive than the hydrocarbon that is the dominant resident fluid where fracturing is usually conducted, or less resistive than the formation water in case the HF occurs in high water saturation regions. Therefore, the resistivity contrast between the two fluids will demarcate the boundary of hydraulic fractures and thus help in precisely modeling some or all parameters of HFG. The interwell recordings can be interpreted along a 2D plane between the two wells, one of them bearing the transmitter and the other with the receiver. The interpretations along a 2D plane can be used to calibrate a 3D unstructured HF model, thereby introducing a reliable calibration input that did not exist before. There can be multiple such 2D planes as more than one well can have a receiver, and, in that case, the 3D HF model has more calibration data and is even more precise. The reason this workflow significantly improves precision in HFG estimation and modeling is that it provides the ability to demarcate only the open portion of the HF and not the entire volume where pumping fluid entered, which would include parts that closed too quickly to contribute to the production from the well. Today, the industry, by its best methods, can only see the entire rock volume that broke due to fracturing, although significant parts of that broken volume might not be contributing to the production and thus are irrelevant in the 3D models upon which important decisions such as production forecast and project economics are based.


2021 ◽  
Author(s):  
Zhanwu Gao ◽  
Kai Li ◽  
Guanghui Gao ◽  
Haiyu Liao ◽  
Yadong Zhang ◽  
...  

Abstract Amongst different options of hydraulic fracture geometry detection or measurement, microseismic monitoring is a commonly used method to reveal the hydraulic fracture geometry in three-dimensional space. Microseismic monitoring typically requires one or several monitoring wells within an effective range from the treatment well, in which the geophones are set to detect the microseismic events occurring during or after the treatment. In the past, most of the monitoring wells have been vertical wells. We present several recent case studies in which both the treatment and monitoring wells were horizontal wells, which produced some unique and interesting observations beyond the initial expectations. One of the prerequisites of a proper microseismic monitoring of hydraulic fracturing treatment is to place the geophone in the proper position because a long distance between the actual fracturing events and the geophone may result in signal deterioration, which influences the processing and increases the uncertainty. This problem is more severe if the treatment well is a horizontal well because the distance from the geophone to the microseismic events varies between stages. One of the methods to solve this issue is to monitor the microseismic events in a horizontal offset well. As horizontal wells are often batched drilled in clusters for tight or unconventional resource nowadays, the availability of the monitoring well is less of a problem, and the constant distance from the monitoring well to the treatment well may help to generate better data quality and more accurate interpretation result. We implemented horizontal well monitoring in two difference cases between 2018 and 2019. For case A, one horizontal monitoring well was used to monitor 54 fracturing stages in three offset wells, and for case B, we monitored 24 fracturing stages in one offset well. In both cases, the geophone arrays were shifted in multiple positions to fit the distance requirements, and both cases generate satisfying interpretation results. The microseismic results from the two cases showed less uncertainty and better precision of microseismic events after processing, as we expected. What is surprising is this type of monitoring showed a unique physical phenomenon a couple of times, which is a casing background noise indicating excessive fracturing extension over a long distance. This phenomenon was captured in both cases, even with small injection rate and fluid volumes, which can be important information for us to better understand the dynamics of fracture propagation in such geomechanical environment and help to set a new guideline and design reference in the same region.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Feng Sun ◽  
Peng Jia ◽  
Shifeng Xue

The perforations play an important role in determining the near-wellbore fracture geometry during the stimulation phase. To address the impact of perforations on fracture geometry in horizontal wells, a 3D coupled hydromechanical finite element model is developed and employed. Based on the theory of continuum damage mechanics, scalar damage variable governs the degradation of the stiffness of the solid. Damage affects the crack element modeling that is used to consider crack behavior and construct a crack-tracking algorithm to simulate propagation. The model was validated against the analytical solutions and perforation fracture experiments. The results indicate that perforation can be used to control the fracturing pressure and propagation behavior of the initial fracture, which has a further effect on the fracture geometry of near-wellbore region in horizontal wells. Optimizing perforation parameters can direct the propagation of the initial fracture toward the preferred fracture plane. The results demonstrate an improved capability to depict the 3D near-wellbore fracture geometry and fracture propagation with a continuum damage model. The model enables the optimization of orientations and perforation parameters, so that most efficient perforating completions can be designed for hydraulic fracture stimulation.


2020 ◽  
Author(s):  
Avinash Wesley ◽  
Bharat Mantha ◽  
Ajay Rajeev ◽  
Aimee Taylor ◽  
Mohit Dholi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document