Effects of different stress regimes on hydraulic fracture geometry: a particle flow code approach

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Sajjad Jalili ◽  
Kaveh Ahangari
2020 ◽  
Author(s):  
Avinash Wesley ◽  
Bharat Mantha ◽  
Ajay Rajeev ◽  
Aimee Taylor ◽  
Mohit Dholi ◽  
...  

2016 ◽  
Author(s):  
Valeriy Pavlov ◽  
Evgeny Korelskiy ◽  
Kreso Kurt Butula ◽  
Artem Kluybin ◽  
Danil Maximov ◽  
...  

Author(s):  
Gustavo A. Ugueto ◽  
Magdalena Wojtaszek ◽  
Paul T. Huckabee ◽  
Alexei A. Savitski ◽  
Artur Guzik ◽  
...  

2019 ◽  
Vol 38 (2) ◽  
pp. 130-137 ◽  
Author(s):  
Robert Hull ◽  
Robert Meek ◽  
Hector Bello ◽  
Kevin Woller ◽  
Jed Wagner

A variety of methods are utilized in an instrumented vertical wellbore to invert for and estimate the heights and lateral extents of the hydraulic fracture treatment. Data were acquired with externally mounted dual- and single-mode fiber optics for measuring strain, acoustics, and temperature. In addition, external pressure gauges, internal conventional tiltmeters, and geophones were also utilized. This instrumented well was used multiple times to record a number of nearby offset horizontal hydraulic stimulations and to record a time-lapse vertical seismic profile. By using multiple data acquisition techniques, we obtained a more comprehensive and accurate estimation of the hydraulic fracture geometry and the dynamic processes taking place internal to the propagating fractures. Furthermore, these data could be used to calibrate fracture models and the fracture interaction with the surrounding unconventional reservoir.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jiangbo Wei ◽  
Shuangming Wang ◽  
Zhou Zhao ◽  
Delu Li ◽  
Lipeng Guo

In coal mines, underground roadways are required to transport coal and personnel. Such tunnels can become unstable and hazardous. This study simulates deformation and damage in the rock surrounding a shallow coal seam roadway using particle flow code. A numerical model of particle flow in the surrounding rock was constructed based on field survey and drilling data. Microcharacteristic indices, including stress, displacement, and microcrack fields, were used to study deformation and damage characteristics and mechanisms in the surrounding rocks. The results show that the stress within the rock changed gradually from a vertical stress to a circumferential stress pattern. Stress release led to self-stabilizing diamond-shaped and X-shaped tensile stress distribution patterns after the excavation of the roadway. Cracking increased and eventually formed cut-through cracks as the concentrated stress transferred to greater depths at the sides, forming shear and triangular-shaped failure regions. Overall, the roof and floor were relatively stable, whereas the sidewalls gradually failed. These results provide a reference for the control of rock surrounding roadways in coal mines.


Sign in / Sign up

Export Citation Format

Share Document