Analytical and Numerical Solution of Oil Recovery From Fractured Reservoirs With Empirical Transfer Functions (includes associated papers 25528 and 25818)

1992 ◽  
Vol 7 (02) ◽  
pp. 219-227 ◽  
Author(s):  
Hossein Kazemi ◽  
J.R. Gilman ◽  
A.M. Elsharkawy
2009 ◽  
Vol 12 (02) ◽  
pp. 189-199 ◽  
Author(s):  
Adetayo S. Balogun ◽  
Hossein Kazemi ◽  
Erdal Ozkan ◽  
Mohammed Al-kobaisi ◽  
Benjamin Ramirez

Summary Accurate calculation of multiphase fluid transfer between the fracture and matrix in naturally fractured reservoirs is a very crucial issue. In this paper, we will present the viability of the use of a simple transfer function to accurately account for fluid exchange resulting from capillary and gravity forces between fracture and matrix in dual-porosity and dual-permeability numerical models. With this approach, fracture- and matrix-flow calculations can be decoupled and solved sequentially, improving the speed and ease of computation. In fact, the transfer-function equations can be used easily to calculate the expected oil recovery from a matrix block of any dimension without the use of a simulator or oil-recovery correlations. The study was accomplished by conducting a 3-D fine-grid simulation of a typical matrix block and comparing the results with those obtained through the use of a single-node simple transfer function for a water-oil system. This study was similar to a previous study (Alkandari 2002) we had conducted for a 1D gas-oil system. The transfer functions of this paper are specifically for the sugar-cube idealization of a matrix block, which can be extended to simulation of a match-stick idealization in reservoir modeling. The basic data required are: matrix capillary-pressure curves, densities of the flowing fluids, and matrix block dimensions. Introduction Naturally fractured reservoirs contain a significant amount of the known petroleum hydrocarbons worldwide and, hence, are an important source of energy fuels. However, the oil recovery from these reservoirs has been rather low. For example, the Circle Ridge Field in Wind River Reservation, Wyoming, has been producing for 50 years, but the oil recovery is less than 15% (Golder Associates 2004). This low level of oil recovery points to the need for accurate reservoir characterization, realistic geological modeling, and accurate flow simulation of naturally fractured reservoirs to determine the locations of bypassed oil. Reservoir simulation is the most practical method of studying flow problems in porous media when dealing with heterogeneity and the simultaneous flow of different fluids. In modeling fractured systems, a dual-porosity or dual-permeability concept typically is used to idealize the reservoir on the global scale. In the dual-porosity concept, fluids transfer between the matrix and fractures in the grid-cells while flowing through the fracture network to the wellbore. Furthermore, the bulk of the fluids are stored in the matrix. On the other hand, in the dual-permeability concept, fluids flow through the fracture network and between matrix blocks. In both the dual-porosity and dual-permeability formulations, the fractures and matrices are linked by transfer functions. The transfer functions account for fluid exchanges between both media. To understand the details of this fluid exchange, an elaborate method is used in this study to model flow in a single matrix block with fractures as boundaries. Our goal is to develop a technique to produce accurate results for use in large-scale modeling work.


2009 ◽  
Vol 12 (02) ◽  
pp. 200-210 ◽  
Author(s):  
Benjamin Ramirez ◽  
Hossein Kazemi ◽  
Mohammed Al-kobaisi ◽  
Erdal Ozkan ◽  
Safian Atan

Summary Accurate calculation of multiphase-fluid transfer between the fracture and matrix in naturally fractured reservoirs is a crucial issue. In this paper, we will present the viability of the use of simple transfer functions to account accurately for fluid exchange resulting from capillary, gravity, and diffusion mass transfer for immiscible flow between fracture and matrix in dual-porosity numerical models. The transfer functions are designed for sugar-cube or match-stick idealizations of matrix blocks. The study relies on numerical experiments involving fine-grid simulation of oil recovery from a typical matrix block by water or gas in an adjacent fracture. The fine-grid results for water/oil and gas/oil systems were compared with results obtained with transfer functions. In both water and gas injection, the simulations emphasize the interaction of capillary and gravity forces to produce oil, depending on the wettability of the matrix. In gas injection, the thermodynamic phase equilibrium, aided by gravity/capillary interaction and, to a lesser extent, by molecular diffusion, is a major contributor to interphase mass transfer. For miscible flow, the fracture/matrix mass transfer is less complicated because there are no capillary forces associated with solvent and oil; nevertheless, gravity contrast between solvent in the fracture and oil in the matrix creates convective mass transfer and drainage of oil. Using the transfer functions presented in this paper, fracture- and matrix-flow calculations can be decoupled and solved sequentially--reducing the complexity of the computation. Furthermore, the transfer-function equations can be used independently to calculate oil recovery from a matrix block.


2009 ◽  
Vol 13 (01) ◽  
pp. 44-55 ◽  
Author(s):  
Hamidreza Salimi ◽  
Johannes Bruining

Summary Most simulations of waterflooding in fractured media are based on the Warren and Root (WR) approach, which uses an empirical transfer function between the fracture and matrix block. We use homogenization to obtain an improved flow model in fractured media, leading to an integro-differential equation; also called the boundary-condition (BC) approach. We formulate a well-posed numerical 3D model for the BC approach. This paper derives this numerical model to solve full 3D integro-differential equations in a field reservoir simulation. We compare the results of the upscaled model with ECLIPSETM results. For the interpretation, it is useful to define three dimensionless parameters that characterize the oil production in fractured media. The most important of these parameters is a Peclet number, defined as the ratio between the time required to imbibe water into the matrix block and the travel time of water in the fracture system. The results of the WR approach and the BC approach are in good agreement when the travel time is of the same order of magnitude as the imbibition time. However, if the travel time is shorter or longer than the imbibition time, the approaches give different results. The BC approach allows the use of transfer functions based on fundamental principles (e.g., the use of a rate-dependent capillary pressure function). When implemented, it can be used to improve recovery predictions for waterflooded fractured reservoirs.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


Sign in / Sign up

Export Citation Format

Share Document