scholarly journals Integrated Halo Model And Hydrodynamic Simulation For Optimization Oil Production In Crystalline Fractured Reservoirs

Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.

2021 ◽  
Author(s):  
M. Fitri Ramli ◽  
M. Shahrul M. Long ◽  
Amol Nivrutti Pote ◽  
Khairul Azri Ishak

Abstract This paper discusses the workflow and method of selecting optimum number of infill and injection wells based on incremental recovery. Normally, for infill wells study, a ‘creaming curve’ method is used to evaluate the optimum number of wells against incremental recovery from the field. However, in the case of determining number of infill wells together with water injection wells, a more comprehensive approach is needed. One needs to evaluate the pressure depletion rate from existing and infill wells together with the dynamic of the producer-injector pairings as well as the sweeping factor. The paper is based on infill and water injection development plan for a brown field in Sabah basin which located in Malaysia. To maintain operatability of the field in the future, several new infill and water injection wells options are evaluated for optimum field life oil production. Unlike infill or producer-only assessment, the same ‘creaming curve’ approach for combination of infill and water injection wells is less effective as large number of simulation runs are needed to sample the combination of these wells that generate optimum oil recovery. This has proven to be challenging especially when the models are large which is normally the case for brown fields and it requires extensive computational hours. In the first part, a modified approach bringing some pre-analytic assessment of producer-injector pairing is being used. The pairings are first ranked based on streamlines visualization, drainage tables and their respective contributions towards oil recovery. The ‘creaming curve’ is then built based on the highest contribution as well as the sequencing of the pairings. The second method mentioned in this paper is the numerical approach through multi-objective optimization using assisted history matching and uncertainty tool. With the help of optimizer, the number of simulation runs can be drastically reduced when only best combination of infills and injectors for each total number of wells are considered. Both alternative methods will be compared with the full computational runs, sampling every single combination of wells. Finally, the optimum number of wells with the combination of infill and water injection wells are analysed based on cumulative oil recovery against the Net Present Value (NPV). This case study therefore demonstrates how alternative methods can be used to resolve the optimum number of infill and water injection wells to avoid lengthy and very large numbers of simulation runs.


2021 ◽  
Author(s):  
Basel AL-Otaibi ◽  
Issa Abu Shiekah ◽  
Manish Kumar Jha ◽  
Gerbert de Bruijn ◽  
Peter Male ◽  
...  

Abstract After 40 years of depletion drive, a mature, giant and multi-layer carbonate reservoir is developed through waterflooding. Oil production, sustained through infill drilling and new development patterns, is often associated with increasingly higher water production compared to earlier development phases. A field re-development plan has been established to alleviate the impact of reservoir heterogeneities on oil recovery, driven by the analysis of the historical performance of production and injection of a range of well types. The field is developed through historical opportunistic development concepts utilizing evolving technology trends. Therefore, the field has initially wide spacing vertical waterflooding patterns followed by horizontal wells, subjected to seawater or produced water injection, applying a range of wells placement or completion technologies and different water injection operating strategies. Systematic categorization, grouping and analyzing of a rich data set of wells performance have been complemented and integrated with insights from coarse full field and conceptual sector dynamic modeling activities. This workflow efficiently paved the way to optimize the field development aiming for increased oil recovery and cost saving opportunities. Integrated analysis of evolving historical development decisions revealed and ranked the primary subsurface and operational drivers behind the limited sweep efficiency and increased watercut. This helped mapping the impact of fundamental subsurface attributes from well placement, completion, or water injection strategies. Excellent vertical wells performance during the primary depletion and the early stage of water flooding was slowly outperformed by a more sustainable horizontal well production and injection strategy. This is consistent with a conceptual model in which the reservoir is dominated by extensive high conductive features that contributed in the early life of the field to good oil production before becoming the primary source of premature water breakthrough after a limited fraction of pore volume water was injected. The next level of analysis provided actual field evidence to support informed decisions to optimize the front runner horizontal wells development concept to cover wells length, orientation, vertical placement in the stratigraphy, spacing, pattern strategy and completion design. The findings enabled delivering updated field development plan covering the field life cycle to sustain and increase field oil production through adding ~ 200 additional wells and introducing more structured water flooding patterns in addition to establishing improved wells reservoir management practices. This integrated study manifests the power, efficiency and value from data driven analysis to capture lessons learned from evolving wells and development concepts applied in a complex brown field over six decades. The workflow enabled the delivery of an updated field development plan and production forecasts within a year through utilizing data analytics to compensate for the recognized limitations of subsurface models in addition to providing input to steer the more time-consuming modeling activities.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1055
Author(s):  
Qian Sun ◽  
William Ampomah ◽  
Junyu You ◽  
Martha Cather ◽  
Robert Balch

Machine-learning technologies have exhibited robust competences in solving many petroleum engineering problems. The accurate predictivity and fast computational speed enable a large volume of time-consuming engineering processes such as history-matching and field development optimization. The Southwest Regional Partnership on Carbon Sequestration (SWP) project desires rigorous history-matching and multi-objective optimization processes, which fits the superiorities of the machine-learning approaches. Although the machine-learning proxy models are trained and validated before imposing to solve practical problems, the error margin would essentially introduce uncertainties to the results. In this paper, a hybrid numerical machine-learning workflow solving various optimization problems is presented. By coupling the expert machine-learning proxies with a global optimizer, the workflow successfully solves the history-matching and CO2 water alternative gas (WAG) design problem with low computational overheads. The history-matching work considers the heterogeneities of multiphase relative characteristics, and the CO2-WAG injection design takes multiple techno-economic objective functions into accounts. This work trained an expert response surface, a support vector machine, and a multi-layer neural network as proxy models to effectively learn the high-dimensional nonlinear data structure. The proposed workflow suggests revisiting the high-fidelity numerical simulator for validation purposes. The experience gained from this work would provide valuable guiding insights to similar CO2 enhanced oil recovery (EOR) projects.


2021 ◽  
pp. 014459872098020
Author(s):  
Ruizhi Hu ◽  
Shanfa Tang ◽  
Musa Mpelwa ◽  
Zhaowen Jiang ◽  
Shuyun Feng

Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.


2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


2021 ◽  
Author(s):  
Boxiao Li ◽  
Hemant Phale ◽  
Yanfen Zhang ◽  
Timothy Tokar ◽  
Xian-Huan Wen

Abstract Design of Experiments (DoE) is one of the most commonly employed techniques in the petroleum industry for Assisted History Matching (AHM) and uncertainty analysis of reservoir production forecasts. Although conceptually straightforward, DoE is often misused by practitioners because many of its statistical and modeling principles are not carefully followed. Our earlier paper (Li et al. 2019) detailed the best practices in DoE-based AHM for brownfields. However, to our best knowledge, there is a lack of studies that summarize the common caveats and pitfalls in DoE-based production forecast uncertainty analysis for greenfields and history-matched brownfields. Our objective here is to summarize these caveats and pitfalls to help practitioners apply the correct principles for DoE-based production forecast uncertainty analysis. Over 60 common pitfalls in all stages of a DoE workflow are summarized. Special attention is paid to the following critical project transitions: (1) the transition from static earth modeling to dynamic reservoir simulation; (2) from AHM to production forecast; and (3) from analyzing subsurface uncertainties to analyzing field-development alternatives. Most pitfalls can be avoided by consistently following the statistical and modeling principles. Some pitfalls, however, can trap experienced engineers. For example, mistakes made in handling the three abovementioned transitions can yield strongly unreliable proxy and sensitivity analysis. For the representative examples we study, they can lead to having a proxy R2 of less than 0.2 versus larger than 0.9 if done correctly. Two improved experimental designs are created to resolve this challenge. Besides the technical pitfalls that are avoidable via robust statistical workflows, we also highlight the often more severe non-technical pitfalls that cannot be evaluated by measures like R2. Thoughts are shared on how they can be avoided, especially during project framing and the three critical transition scenarios.


2021 ◽  
Author(s):  
Eko Awan Yudha Fitnawan ◽  
Wibi Aulia Harsum ◽  
Agus Hasan ◽  
Muhammad Iffan Hannanu ◽  
Steven Leonardus Paulus ◽  
...  

Abstract Indonesia has become a net-oil importer since 2004 as the growing internal demand exceeds Indonesia's oil production. As many fields go into mature phase and combined with other challenges, the national oil production in the last decade has been decreasing from 945 MBOPD to 745 MBOPD with a decline rate of 3-5% per year. Thus, the contribution of the oil and gas sector to the state revenues has also shown a downward trend from 21% in 2010 to only 9.2% in 2019. However,oil production is still strategically importantfor the national economy. It is important for economic value creation, power generation, transportation, and industries as most of the archipelago's infrastructures are still based on fossil energy. If no effort is made to increase production, the country will be fullydependent on crude oil imports, which poses a threat to national energy security. It is thereforeinthe nation's great interest to enhance oil production, minimizing the deficit gapbetween export and import. Several key strategies may be considered to achieve this ambitious target. These strategies can be categorized into the following: 1) People and high performing organization; 2) Exploration, as critical factor for future production; 3) Improved oil recovery (including enhancedoil recovery) technologies, to grow production from the maturing fields; 4) Fast track and simplified project to develop small field discoveries; 5) Strong collaboration between government, industry, academia, and professional associations; and 6)Cost conscious culture. The derivatives of the above-mentioned strategies are among others: standardized resource data management, open source & digitalized geoscience data library, reimbursement system for exploration costs, near field/infrastructure exploration,new play concept, cluster license collaboration, infill wells campaign, multilateral wells, waterflooding, gas injection, stimulation and hydraulic fracturing campaign, well interventions, EOR screening, perfect-well optimization, standardize subsea and/or topside production system, digitalization, and attractive fiscal and regulation that encourages not only the ‘big operator’ to participate in the petroleum sector. The foundation of these strategies should be the legal certainty and effective & proactive bureaucracy. Above all, it is also important to emphasize the common ground of havingearly HSE involvement as part of the solution. In this paper, the authors would like to contribute in sharing the knowledge, technology and perspectives to all petroleum industry professionals in Indonesia based on the authors exposure in the Norwegian petroleum activities. The paper will also review the strategies, short term and long-term opportunities that may inspire Indonesian petroleum authorities and industry in transforming the ambition into action to achieve the national production target of 1 MMBOPD and 12 BCFD gas by 2030.


2021 ◽  
Author(s):  
Karthik Ilangovan ◽  
Mazlan Dindi ◽  
Alexander Fuglesang ◽  
Bastiaen Van Der Rest

Abstract In recent years, various operating companies have been working on the processes of "Simplification, Standardization, Automation, Digitalization, and Optimization in several elements". To achieve this, there are tremendous subsea technology developments going on all over the world in many areas such as; design in terms of size and weight, improvement in reliability, advanced materials, flow assurance, digital tools, real time condition monitoring and control, installation and operation. The development of Subsea technology continues to be an important part of subsea field development projects to reduce the life cycle costs, increase recovery, provide solution to long tieback problems and challenges. PETRONAS ("the Company") is pursuing an Upstream Life Cycle Cost (CAPEX/OPEX) reduction approach under the Facilities of Future (FOF) program and mission called "Subsea Factory". The FOF target is to reduce Upstream life cycle cost by 40% starting from 2025 and Subsea Factory is one of the enablers to contribute to the reduction. There are four primary technologies focused on Subsea Factory: Subsea Separation, Subsea Multiphase Pump, Water Injection and Subsea Storage. The Subsea Multiphase Pump is one of the prioritized technologies for Subsea Factory to contribute to a 40% reduction. Subsea multiphase pump technology has great potential to reduce the CAPEX/OPEX and increase oil recovery, but due to the high equipment cost, huge topside space requirement, reliability and operating issues become very challenging and limit its application to operating companies. The Company collaborates with FASTsubsea AS on a Joint Industry Project to develop and qualify "the World first All Electric & Topside-less Subsea Multiphase Pump Technology". The uniqueness about this technology compared to commonly installed subsea pump is that it requires much less topside space as there is no need for variable speed drives or barrier fluid hydraulic power units. This paper describes the qualification and application of All-electric & Topside-less subsea multiphase pump technology in the Company - Subsea Factory mission, including: pain point with conventional subsea multiphase pumpthe Joint Industrial Project initiative with respect to technology development to pilot test to maturityimplementation of this technology and value creation in upcoming field development projectthe case study and potential of this technology for the Company future field development project


Author(s):  
Amin Abolhasanzadeh ◽  
Ali Reza Khaz’ali ◽  
Rohallah Hashemi ◽  
Mohammadhadi Jazini

Without Enhanced Oil Recovery (EOR) operations, the final recovery factor of most hydrocarbon reservoirs would be limited. However, EOR can be an expensive task, especially for methods involving gas injection. On the other hand, aqueous injection in fractured reservoirs with small oil-wet or mixed-wet matrices will not be beneficial if the rock wettability is not changed effectively. In the current research, an unpracticed fabrication method was implemented to build natively oil-wet, fractured micromodels. Then, the efficiency of microbial flooding in the micromodels, as a low-cost EOR method, is investigated using a new-found bacteria, Bacillus persicus. Bacillus persicus improves the sweep efficiency via reduction of water/oil IFT and oil viscosity, in-situ gas production, and wettability alteration mechanisms. In our experiments, the microbial flooding technique extracted 65% of matrix oil, while no oil was produced from the matrix system by water or surfactant flooding.


2021 ◽  
pp. 1-20
Author(s):  
Mohammad Izadi ◽  
Phuc H. Nguyen ◽  
Hazem Fleifel ◽  
Doris Ortiz Maestre ◽  
Seung I. Kam

Summary While there are a number of mechanistic foam models available in the literature, it still is not clear how such models can be used to guide actual field development planning in enhanced oil recovery (EOR) applications. This study aims to develop the framework to determine the optimum injection condition during foam EOR processes by using a mechanistic foam model. The end product of this study is presented in a graphical manner, based on the sweep-efficiency contours (from reservoir simulations) and the reduction in gas mobility (from mechanistic modeling of foams with bubble population balance). The main outcome of this study can be summarized as follows: First, compared to gas/water injection with no foams, injection of foams can improve cumulative oil recovery and sweep efficiency significantly. Such a tendency is observed consistently in a range of total injection rates tested (low, intermediate, and high total injection rates Qt). Second, the sweep efficiency is more sensitive to the injection foam quality fg for dry foams, compared to wet foams. This proves how important bubble-population-balance modeling is to predict gas mobility reduction as a function of Qt and fg. Third, the graphical approach demonstrates how to determine the optimum injection condition and how such an optimum condition changes at different field operating conditions and limitations (i.e., communication through shale layers, limited carbon dioxide (CO2) supply, cost advantage of CO2 compared to surfactant chemicals, etc.). For example, the scenario with noncommunicating shale layers predicts the maximum sweep of 49% at fg = 55% at high Qt, while the scenarios with communicating shale layers (with 0.1-md permeability) predicts the maximum sweep of only 40% at fg = 70% at the same Qt. The use of this graphical method for economic and business decisions is also shown, as an example, to prove the versatility and robustness of this new technique.


Sign in / Sign up

Export Citation Format

Share Document