An Efficient Bi-Objective Optimization Workflow Using the Distributed Quasi-Newton Method and Its Application to Field Development Optimization

2021 ◽  
Author(s):  
Yixuan Wang ◽  
Faruk Alpak ◽  
Guohua Gao ◽  
Chaohui Chen ◽  
Jeroen Vink ◽  
...  

Abstract Although it is possible to apply traditional optimization algorithms to determine the Pareto front of a multi-objective optimization problem, the computational cost is extremely high, when the objective function evaluation requires solving a complex reservoir simulation problem and optimization cannot benefit from adjoint-based gradients. This paper proposes a novel workflow to solve bi-objective optimization problems using the distributed quasi-Newton (DQN) method, which is a well-parallelized and derivative-free optimization (DFO) method. Numerical tests confirm that the DQN method performs efficiently and robustly. The efficiency of the DQN optimizer stems from a distributed computing mechanism which effectively shares the available information discovered in prior iterations. Rather than performing multiple quasi-Newton optimization tasks in isolation, simulation results are shared among distinct DQN optimization tasks or threads. In this paper, the DQN method is applied to the optimization of a weighted average of two objectives, using different weighting factors for different optimization threads. In each iteration, the DQN optimizer generates an ensemble of search points (or simulation cases) in parallel and a set of non-dominated points is updated accordingly. Different DQN optimization threads, which use the same set of simulation results but different weighting factors in their objective functions, converge to different optima of the weighted average objective function. The non-dominated points found in the last iteration form a set of Pareto optimal solutions. Robustness as well as efficiency of the DQN optimizer originates from reliance on a large, shared set of intermediate search points. On the one hand, this set of searching points is (much) smaller than the combined sets needed if all optimizations with different weighting factors would be executed separately; on the other hand, the size of this set produces a high fault tolerance. Even if some simulations fail at a given iteration, DQN’s distributed-parallel information-sharing protocol is designed and implemented such that the optimization process can still proceed to the next iteration. The proposed DQN optimization method is first validated on synthetic examples with analytical objective functions. Then, it is tested on well location optimization problems, by maximizing the oil production and minimizing the water production. Furthermore, the proposed method is benchmarked against a bi-objective implementation of the MADS (Mesh Adaptive Direct Search) method, and the numerical results reinforce the auspicious computational attributes of DQN observed for the test problems. To the best of our knowledge, this is the first time that a well-parallelized and derivative-free DQN optimization method has been developed and tested on bi-objective optimization problems. The methodology proposed can help improve efficiency and robustness in solving complicated bi-objective optimization problems by taking advantage of model-based search optimization algorithms with an effective information-sharing mechanism.

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yixuan Wang ◽  
Faruk Alpak ◽  
Guohua Gao ◽  
Chaohui Chen ◽  
Jeroen Vink ◽  
...  

Summary Although it is possible to apply traditional optimization algorithms to determine the Pareto front of a multiobjective optimization problem, the computational cost is extremely high when the objective function evaluation requires solving a complex reservoir simulation problem and optimization cannot benefit from adjoint-based gradients. This paper proposes a novel workflow to solve bi-objective optimization problems using the distributed quasi-Newton (DQN) method, which is a well-parallelized and derivative-free optimization (DFO) method. Numerical tests confirm that the DQN method performs efficiently and robustly. The efficiency of the DQN optimizer stems from a distributed computing mechanism that effectively shares the available information discovered in prior iterations. Rather than performing multiple quasi-Newton optimization tasks in isolation, simulation results are shared among distinct DQN optimization tasks or threads. In this paper, the DQN method is applied to the optimization of a weighted average of two objectives, using different weighting factors for different optimization threads. In each iteration, the DQN optimizer generates an ensemble of search points (or simulation cases) in parallel, and a set of nondominated points is updated accordingly. Different DQN optimization threads, which use the same set of simulation results but different weighting factors in their objective functions, converge to different optima of the weighted average objective function. The nondominated points found in the last iteration form a set of Pareto-optimal solutions. Robustness as well as efficiency of the DQN optimizer originates from reliance on a large, shared set of intermediate search points. On the one hand, this set of searching points is (much) smaller than the combined sets needed if all optimizations with different weighting factors would be executed separately; on the other hand, the size of this set produces a high fault tolerance, which means even if some simulations fail at a given iteration, the DQN method’s distributed-parallelinformation-sharing protocol is designed and implemented such that the optimization process can still proceed to the next iteration. The proposed DQN optimization method is first validated on synthetic examples with analytical objective functions. Then, it is tested on well-location optimization (WLO) problems by maximizing the oil production and minimizing the water production. Furthermore, the proposed method is benchmarked against a bi-objective implementation of the mesh adaptive direct search (MADS) method, and the numerical results reinforce the auspicious computational attributes of DQN observed for the test problems. To the best of our knowledge, this is the first time that a well-parallelized and derivative-free DQN optimization method has been developed and tested on bi-objective optimization problems. The methodology proposed can help improve efficiency and robustness in solving complicated bi-objective optimization problems by taking advantage of model-based search algorithms with an effective information-sharing mechanism. NOTE: This paper is published as part of the 2021 SPE Reservoir Simulation Conference Special Issue.


2021 ◽  
Author(s):  
Faruk Alpak ◽  
Yixuan Wang ◽  
Guohua Gao ◽  
Vivek Jain

Abstract Recently, a novel distributed quasi-Newton (DQN) derivative-free optimization (DFO) method was developed for generic reservoir performance optimization problems including well-location optimization (WLO) and well-control optimization (WCO). DQN is designed to effectively locate multiple local optima of highly nonlinear optimization problems. However, its performance has neither been validated by realistic applications nor compared to other DFO methods. We have integrated DQN into a versatile field-development optimization platform designed specifically for iterative workflows enabled through distributed-parallel flow simulations. DQN is benchmarked against alternative DFO techniques, namely, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method hybridized with Direct Pattern Search (BFGS-DPS), Mesh Adaptive Direct Search (MADS), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). DQN is a multi-thread optimization method that distributes an ensemble of optimization tasks among multiple high-performance-computing nodes. Thus, it can locate multiple optima of the objective function in parallel within a single run. Simulation results computed from one DQN optimization thread are shared with others by updating a unified set of training data points composed of responses (implicit variables) of all successful simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by a linear-interpolation technique using all or a subset of training-data points. The gradient of the objective function is analytically computed using the estimated sensitivities of implicit variables with respect to explicit variables. The Hessian matrix is then updated using the quasi-Newton method. A new search point for each thread is solved from a trust-region subproblem for the next iteration. In contrast, other DFO methods rely on a single-thread optimization paradigm that can only locate a single optimum. To locate multiple optima, one must repeat the same optimization process multiple times starting from different initial guesses for such methods. Moreover, simulation results generated from a single-thread optimization task cannot be shared with other tasks. Benchmarking results are presented for synthetic yet challenging WLO and WCO problems. Finally, DQN method is field-tested on two realistic applications. DQN identifies the global optimum with the least number of simulations and the shortest run time on a synthetic problem with known solution. On other benchmarking problems without a known solution, DQN identified compatible local optima with reasonably smaller numbers of simulations compared to alternative techniques. Field-testing results reinforce the auspicious computational attributes of DQN. Overall, the results indicate that DQN is a novel and effective parallel algorithm for field-scale development optimization problems.


Author(s):  
Pengfei (Taylor) Li ◽  
Peirong (Slade) Wang ◽  
Farzana Chowdhury ◽  
Li Zhang

Traditional formulations for transportation optimization problems mostly build complicating attributes into constraints while keeping the succinctness of objective functions. A popular solution is the Lagrangian decomposition by relaxing complicating constraints and then solving iteratively. Although this approach is effective for many problems, it generates intractability in other problems. To address this issue, this paper presents an alternative formulation for transportation optimization problems in which the complicating attributes of target problems are partially or entirely built into the objective function instead of into the constraints. Many mathematical complicating constraints in transportation problems can be efficiently modeled in dynamic network loading (DNL) models based on the demand–supply equilibrium, such as the various road or vehicle capacity constraints or “IF–THEN” type constraints. After “pre-building” complicating constraints into the objective functions, the objective function can be approximated well with customized high-fidelity DNL models. Three types of computing benefits can be achieved in the alternative formulation: ( a) the original problem will be kept the same; ( b) computing complexity of the new formulation may be significantly reduced because of the disappearance of hard constraints; ( c) efficiency loss on the objective function side can be mitigated via multiple high-performance computing techniques. Under this new framework, high-fidelity and problem-specific DNL models will be critical to maintain the attributes of original problems. Therefore, the authors’ recent efforts in enhancing the DNL’s fidelity and computing efficiency are also described in the second part of this paper. Finally, a demonstration case study is conducted to validate the new approach.


2021 ◽  
Vol 11 (5) ◽  
pp. 2042
Author(s):  
Hadi Givi ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ruben Morales-Menendez ◽  
Ricardo A. Ramirez-Mendoza ◽  
...  

Optimization problems in various fields of science and engineering should be solved using appropriate methods. Stochastic search-based optimization algorithms are a widely used approach for solving optimization problems. In this paper, a new optimization algorithm called “the good, the bad, and the ugly” optimizer (GBUO) is introduced, based on the effect of three members of the population on the population updates. In the proposed GBUO, the algorithm population moves towards the good member and avoids the bad member. In the proposed algorithm, a new member called ugly member is also introduced, which plays an essential role in updating the population. In a challenging move, the ugly member leads the population to situations contrary to society’s movement. GBUO is mathematically modeled, and its equations are presented. GBUO is implemented on a set of twenty-three standard objective functions to evaluate the proposed optimizer’s performance for solving optimization problems. The mentioned standard objective functions can be classified into three groups: unimodal, multimodal with high-dimension, and multimodal with fixed dimension functions. There was a further analysis carried-out for eight well-known optimization algorithms. The simulation results show that the proposed algorithm has a good performance in solving different optimization problems models and is superior to the mentioned optimization algorithms.


Author(s):  
T. E. Potter ◽  
K. D. Willmert ◽  
M. Sathyamoorthy

Abstract Mechanism path generation problems which use link deformations to improve the design lead to optimization problems involving a nonlinear sum-of-squares objective function subjected to a set of linear and nonlinear constraints. Inclusion of the deformation analysis causes the objective function evaluation to be computationally expensive. An optimization method is presented which requires relatively few objective function evaluations. The algorithm, based on the Gauss method for unconstrained problems, is developed as an extension of the Gauss constrained technique for linear constraints and revises the Gauss nonlinearly constrained method for quadratic constraints. The derivation of the algorithm, using a Lagrange multiplier approach, is based on the Kuhn-Tucker conditions so that when the iteration process terminates, these conditions are automatically satisfied. Although the technique was developed for mechanism problems, it is applicable to any optimization problem having the form of a sum of squares objective function subjected to nonlinear constraints.


2016 ◽  
Vol 38 (4) ◽  
pp. 307-317
Author(s):  
Pham Hoang Anh

In this paper, the optimal sizing of truss structures is solved using a novel evolutionary-based optimization algorithm. The efficiency of the proposed method lies in the combination of global search and local search, in which the global move is applied for a set of random solutions whereas the local move is performed on the other solutions in the search population. Three truss sizing benchmark problems with discrete variables are used to examine the performance of the proposed algorithm. Objective functions of the optimization problems are minimum weights of the whole truss structures and constraints are stress in members and displacement at nodes. Here, the constraints and objective function are treated separately so that both function and constraint evaluations can be saved. The results show that the new algorithm can find optimal solution effectively and it is competitive with some recent metaheuristic algorithms in terms of number of structural analyses required.


Author(s):  
Jose Carrillo ◽  
Shi Jin ◽  
Lei Li ◽  
Yuhua Zhu

We improve recently introduced consensus-based optimization method, proposed in [R. Pinnau, C. Totzeck, O. Tse and S. Martin, Math. Models Methods Appl. Sci., 27(01):183{204, 2017], which is a gradient-free optimization method for general nonconvex functions. We rst replace the isotropic geometric Brownian motion by the component-wise one, thus removing the dimensionality dependence of the drift rate, making the method more competitive for high dimensional optimization problems. Secondly, we utilize the random mini-batch ideas to reduce the computational cost of calculating the weighted average which the individual particles tend to relax toward. For its mean- eld limit{a nonlinear Fokker-Planck equation{we prove, in both time continuous and semi-discrete settings, that the convergence of the method, which is exponential in time, is guaranteed with parameter constraints independent of the dimensionality. We also conduct numerical tests to high dimensional problems to check the success rate of the method.


2015 ◽  
pp. 1434-1469 ◽  
Author(s):  
Hindriyanto Dwi Purnomo ◽  
Hui-Ming Wee

A new metaheuristic algorithm is proposed. The algorithm integrates the information sharing as well as the evolution operators in the swarm intelligence algorithm and evolutionary algorithm respectively. The basic soccer player movement is used as the analogy to describe the algorithm. The new method has two basic operators; the move off and the move forward. The proposed method elaborates the reproduction process in evolutionary algorithm with the powerful information sharing in the swarm intelligence algorithm. Examples of implementations are provided for continuous and discrete problems. The experiment results reveal that the proposed method has the potential to become a powerful optimization method. As a new method, the proposed algorithm can be enhanced in many different ways such as investigating the parameter setting, elaborating more aspects of the soccer player movement as well as implementing the proposed method to solve various optimization problems.


Sign in / Sign up

Export Citation Format

Share Document