Risk-Controlled Wellbore Stability Criterion Based on Machine Learning Assisted Finite Element Model

2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


2020 ◽  
pp. 147592172092748 ◽  
Author(s):  
Zhiming Zhang ◽  
Chao Sun

Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model.


2016 ◽  
Author(s):  
Patrick S. McNeff ◽  
Brian K. Paul

In this paper, a finite element model is developed, and experimentally validated, for predicting the force required to produce a compression seal between a polycarbonate sealing boss and a 25 μm thick elastoviscoplastic hemodialysis membrane. This work leverages previous efforts to determine the conditions for hermetic sealing in a microchannel hemodialyser fabricated using hot-embossed polycarbonate microchannel laminae containing sealing boss features. Methods are developed for mechanically characterizing the thin elastoviscoplastic hemodialysis membrane. Experimental data for assessing the depth of penetration into the membrane as a function of force show an R2 value of 0.85 showing good repeatability. The average percent error was found to be −8.0% with a range between −21.9% and 4.4% error in the strain region of interest.


2009 ◽  
Vol 12 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Tom Allen ◽  
Steve Haake ◽  
Simon Goodwill

1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


Sign in / Sign up

Export Citation Format

Share Document