Efficiently Shifting Sliding Sleeves in Extended Reach Horizontal Wells with Electric-Line: A Case Study

2021 ◽  
Author(s):  
Thomas Mauchien ◽  
Sharat Kishore ◽  
Amanda Olivio ◽  
Mostafa Ahmed

Abstract Traditional intervention operations with coiled tubing (CT) in extended reach horizontal wells might be difficult to access due to lockup from frictional forces and operational inefficiencies. Using conventional shifting tools requires multiple runs to shift open and close multiple sliding sleeve doors (SSD). This paper is a case study of an electric-line powered shifting intervention operation to shift open an SSD, circulate fluids though the sleeve and into the annulus, and then close and repeat this for another SSD in a long horizontal well—all in a single run. The paper discusses the different methods that can be used to efficiently seek and latch onto the shifting profiles using a tractor, wireline cable, and the shifting tool itself with an inchworm motion. The electric-line shifting tool monitored and verified the opening and closing of the sleeves in real time using its onboard sensors. These techniques were effectively deployed in multiple wells that required the annulus to be displaced with fluid after running smart completions. The completions were installed in the well with the SSDs in a closed position, and the shifting intervention consisted in opening the SSD, pumping fluids through the sleeve, and closing the SSD. The tool was anchored in place in the wellbore during the entire circulating operation, and the SSD was subsequently closed. This operation was then repeated on the second SSD in the wellbore, and the entire operation was completed in a single run. Also, no additional caliper run was needed as the shifting tool verified the position of the SSDs. These methods were used in a long horizontal well with the help of real-time measurements. The tool measurements identified if the SSDs were in open or closed position or anywhere in-between. The shifting tool provided confirmation via its measurements that the sleeve was not partially open. This was particularly important when pumping fluid through the annulus to achieve the maximum flow through the sleeve. Operating using electric-line was extremely efficient and eliminated the need to perform multiple runs, thus achieving time savings on the rig. This is the first time that a paper discusses the different seek methods that can be used for carrying out a electric-line mechanical intervention operation. It represents a novel method using a shifting tool as a caliper to probe and measure the completion inner diameter changes while seeking for the profile. It provides a valuable method for reliably and confidently locating and latching onto a shifting profile. Finally, this is the first time that a paper correlates the theoretical mechanics of shifting a sliding sleeve with consistent results from system integration tests and downhole measurements from the real job.

2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


2016 ◽  
Author(s):  
Anthony MacLeod

ABSTRACT Objective A case story from ME will be presented covering an extreme extended reach, offshore well. Any increase to operating efficiency can save time and increase production. In this case story two SSD's were opened in a single run on e-line, an outstanding achievement due to the ID restrictions and extended reach of the well. The paper will discuss the planning, the operation, the achievements and the lessons learned. Methods, Procedures, Process This well was recently worked over, retrieval and new installation of upper and lower completion. Due to the well going on total losses during the workover, a closed system was deployed to enable the operator to set the hydraulic packers. The packer is utilized for isolation between two zones, with each zone having two SSD's in which one SSD per zone was required to be opened to allow access to the formation. From day one of planning the primary solution for this intervention was an electric over hydraulic toolstring made up of five tools, a 218 electric release device, 218 CCL for correlation, a 218 tractor for conveyance, a 218 stroker for the mechanical manipulation and a 218 key to address the shifting profile in the SSD (toolstring). A slimhole toolstring was required due to the packer ID of 2.81" The operator was using the service provider for other interventions on this workover campaign and decided to challenge them with opening two SSD's in one run while not shifting the adjacent SSD's. The challenging underlying economics of the industry today has created a powerful driver for operators to find more efficient, cost effective and safer intervention methodologies. The operation covered in this case provided just such improvements to the client: by utilizing electric line intervention tools the operator negated the requirement for a large footprint coiled tubing intervention. Results, Observations, Conclusions A System Integration Test (SIT) was completed onshore prior to mobilization, where multiple shifts were successfully executed on a 90° deviated pipe using a single set of shifting key pads. Test results were then repeated offshore, completing two interventions in a single run. The SSD's were successfully opened at ~12,000 ft MDRT and ~8,000 ft MDRT, respectively while leaving the two adjacent SSD's in the closed position. Results, client objective was 100% achieved using only electric line, enabling the client to move forward with similar well designs having the confidence that a safe, reliable electric line solution is locally available. Additional results include reduced HSE risks as the e-line approach eliminated the use of a heavier CTU. Further contributing to the HSE benefits on this operation, only 6 persons were needed on site and no heavy lifts were required. The paper will also cover some lessons learned as debris in the profile and tubing caused some challenges. Novel/Additive Information This operation shows how the industry is constantly trying to improve on existing methods in order to be more efficient, safe and cost effective.


2012 ◽  
Author(s):  
Muhammad Natsir ◽  
Nurul Hasani ◽  
Nasirudin Tubagus ◽  
Adjie Setiawan ◽  
Yus Willian ◽  
...  

2021 ◽  
Author(s):  
Ahmed ElSayed Ghonim ◽  
Amr Zeinhom Elfarran ◽  
Osama Aly Okasha ◽  
Ehab Mohamed Haridy ◽  
Mahmoud Mohamed Koriesh ◽  
...  

Abstract This paper represents a challenging rig-less intervention in highly deviated wells with heavy oil that has always been a challenge to conventional electric line (e-line) that is not a valid intervention technique due to its inherent limitations in these harsh environments. Electric Coiled Tubing (E-CT) was utilized not only to achieve safer deployment of the guns, but also to allow real-time operations on three wells which were inaccessible due to heavy oil content and restricted e-line accessibility. A case study is presented for a campaign performed using E-CT to convey the perforating string while pumping nitrogen (N2) to lift the well and achieve flowing under-balance to maximize perforation clean-up and minimize skin. Real-time readings from gamma ray, pressure and temperature sensors were used to accurately position the guns, generate the desired dynamic underbalance, and finally validate successful detonation based on pressure and temperature responses. This was achieved while N2 lifting and firing the guns to optimize the required under-balance value providing immediate feedback related to the production gain to determine the zonal contributions and maximize the economical production gains. Dynamic wellbore behavior software modeling was also used to predict the dynamic under-balance effect for maximizing perforation efficiency. Deployment of E-CT was very challenging in terms of operational execution but was extremely beneficial for the safety of the pipe during such operations. A total of 13 runs comprising of milling, tubing cleaning and drifting were performed to remove the accumulated scales inside the production tubing and to ensure full accessibility to target intervals. Coiled Tubing (CT) dynamic modeling software was utilized to simulate the N2 rate needed to achieve the target underbalance while maintaining safe perforating parameters for the CT while firing the guns. As a result of software simulations, one of the three wells was then recommended for an acid wash treatment which achieved very effective results. 15 perforation runs were performed on the three wells re-perforating a total of 188 ft of interval, resulting in a production increase of more than 300%. This was a significant improvement compared to the previous campaign carried out in 2017 where perforating in static conditions showed no increase in production without work-over rig intervention. E-CT intervention also eliminated the need for waiting on rig schedule and avoiding deferred production.


Sign in / Sign up

Export Citation Format

Share Document