First Successful Application of Multi-Stage Proppant Fracturing on Horizontal Well in Carbonate Reservoirs in Iraq

2022 ◽  
Author(s):  
Dawei Zhu ◽  
Mingyue Cui ◽  
Yandong Chen ◽  
Yongli Wang ◽  
Yunhong Ding ◽  
...  

Abstract The carbonate reservoir S is a giant limestone reservoir in H Oilfield, Iraq. Although the reserves account for 25%, the production contribution is only 0.4% to the total oilfield production due to poor petrophysical properties. Accordingly, the first proppant fracturing on vertical well was successfully executed in December 2016, which has already achieved a steady production period over than 3 years. In order to further improve the productivity, the first multi-stage proppant fracturing(MSPF) on horizontal well(SH01X) was successfully applied in November 2019, a technique which is rarely reported for porous limestone reservoir in the Middle East. Proppant fracturing in carbonate reservoirs is a technique difficulty worldwide, especially this is a lack of experiences in the Middle East. To ensure the success of this campaign, a holistic technical study including geology evaluation, reservoir performance analysis, drilling trajectory design, completion and fracturing technique design have been carried out based on principle of "geology-engineering integration". This paper will present a comprehensive illustration including treatment design (main completion-fracturing technique, total scale, fracturing fluid, proppant), job execution (mini-frac, main-frac) and post-frac production performance for this successful campaign. True vertical depth (TVD) of Well SH01X is 2720 m and the horizontal section length is 811 m. Based on the main technique of multi-stage proppant fracturing with open hole packers and sliding sleeves, totally 3784.3 m3 fracturing fluid and 452 m3 proppant were pumped in 8 stages. The test production was 3214 BOPD (choke size: 40/64", wellhead pressure: 970 psi). A historical breakthrough in the productivity of S reservoir has been achieved by the campaign. The post-frac evaluation shows that the treatment parameters are consistent with the design. The connectivity between artificial fractures and formation is greatly improved, and the stimulation effect is significant. Currently the "production under controlled pressure" mode has been executed and the stable production under stimulation target rate has been maintained. The systematic "geology-engineering integration" workflow is of significance to the success of the treatment as well as the stimulation effect. MSPF is planned to be a game-changing technique to develop the huge reserves of S reservoir. The experience gained from this case could provide theoretical as well as practical references for similar reservoirs in the Middle East.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Renfeng Yang ◽  
Ruizhong Jiang ◽  
Shirish Patil ◽  
Shun Liu ◽  
Yihua Gao ◽  
...  

Abstract The main characteristic of the complicated carbonate reservoirs is notably strong heterogeneous, leading to a high uncertainty in formation parameter evaluation. The most reliable method for obtaining the dynamic parameters is well test interpretation. However, the well test curve shows similar characteristics for multi-layers reservoirs, dual-medium reservoirs, and carbonate reservoirs with lithology mixed sedimentation lithology. Sometimes the well test fitting result under the mentioned three kinds of models is satisfied, but the interpretation result is quite different. In order to reduce the parameter evaluation multiplicity, the synthetic identification and evaluation method for obtaining the physical parameters of the complicated carbonate reservoir was proposed, based on completion types, core analysis, lithology analysis, and well test results. The evaluation method distinguishes the different carbonate reservoir characteristics from similar well test responses by summarizing and classifying the completion method, reservoir fracture characteristics, and production logging test (PLT) results. The reliability of the proposed method is verified by an application of actual carbonate reservoir parameters evaluation. The proposed method can distinguish among multi-layers reservoirs, dual-medium, and complicated reservoirs with mixed sedimentation lithology whose main characteristic is that concavity existing in the pressure derivative curve. If the well test match results were satisfied enough which lead to the proposed method and process was ignored, the interpretation results and production performance prediction may deviate largely from the actual situation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daigang Wang ◽  
Jingjing Sun

Abstract Cyclic water huff and puff (CWHP) has proven to be an attractive alternative to improve oil production performance after depletion-drive recovery in fractured-vuggy carbonate reservoirs. However, due to the impact of strong heterogeneity, multiple types of fractured-vuggy medium, poor connectivity, complex flow behaviors and oil-water relationship, CWHP is merely suitable for specific types of natural fractured-vuggy medium, usually causing a great difference in actual oil-yielding effect. It remains a great challenge for accurate evaluation of CWHP adaptability and quantitative prediction of production performance in fractured-vuggy carbonate reservoir, which severely restricts the application of CWHP. For this study, we firstly enable the newly developed fuzzy grey relational analysis to quantify the adaptability of CWHP. With production history of several targeted producers, the accuracy of the proposed method is validated. Based on the traditional percolation theory and waterflood mechanisms in various types of fractured-vuggy medium, a quantitative prediction model for cyclic water cut fwp and increased recovery factor ΔR is presented. The CWHP production performance is discussed by using the Levenberg-Marquardt algorithm for history matching. With a better understanding of the fwp ~ ΔR curve characteristics in different types of fractured-vuggy medium, proper strategies or measures for potential-tapping remaining oil are provided. This methodology can also offer a good basis for engineers and geologists to develop other similar reservoirs with high efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinxin Fang ◽  
Hong Feng

AbstractRock typing is an extremely critical step in the estimation of carbonate reservoir quality and reserves in the Middle East. In order to recognize the rock types of carbonate reservoirs in the Mishrif Formation better, classify the reservoirs accurately, and establish the permeability model in line with the study area precisely, it is necessary to study the recognition method conforming to the actual situation of the study area. The practice shows that the current recognition methods based on capillary pressure curve, flow unit and NMR logging data can effectively distinguish rock types, but a large number of accurate experimental data are required, which can only be applied in a few cored well, however, cannot be applied in the whole oil field. In this study, based on core, thin section, logging data, the sedimentary characteristics of carbonate reservoir, logging response of four rock types as well as porosity and permeability characteristics of Mishrif Formation in W are comprehensively studied. Based on Bayesian stepwise discriminant theory in multivariate statistics, the Bayesian discrimination model based on conventional logging data is established. The examining results showed that, compared with the description of logging and coring, the accuracy of Bayesian discriminant model and cross confirmation rate have achieved more than 80% for the original sample. Reliability verification showed that the matching degree of the rock type recognized in the non-cored well with the core and mud logging was as high as 90%, which matched the depositional environment of the entire region. The study results confirm the validity and generalizability of the Bayesian method to identify and predict rock types, which can be applied to the entire Middle East region to solve the problem of the lack of core data to accurately evaluate the quality of non-cored wells and accurately predict production, meeting the needs of actual reservoir evaluation and production development in the Middle East.


2019 ◽  
Author(s):  
David Rafael Contreras Perez ◽  
Ruqaya Abdulla Al Zaabi ◽  
Bernato Viratno ◽  
Christopher Sellar ◽  
Maria Indriaty Susanto

2005 ◽  
Author(s):  
Herve Farran ◽  
Jeremy Harris ◽  
Saleh H. Al Jabri ◽  
Richard Robert Jackson ◽  
Saif Rashid Alkhayari ◽  
...  

2013 ◽  
Author(s):  
Mingguang Che ◽  
Yonghui Wang ◽  
Xingsheng Cheng ◽  
Yongjun Lu ◽  
Yongping Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document