Shape Memory Polymers as Lost Circulation Materials for Sealing Wide-Opened Natural Fractures

2021 ◽  
pp. 1-12
Author(s):  
Maryam Tabatabaei ◽  
Arash Dahi Taleghani ◽  
Guoqiang Li ◽  
Tianyi Zhang

Summary While there have been various lost circulation materials (LCMs) available in the market for treating fractures during the drilling of oil and gas wells, there is still a demand for a technology to seal large fractures. Considering limitations on the size of the particles that can be circulated through the drilling equipment, especially the bottomhole assembly, simply enlarging conventional LCM particles becomes ineffective for sealing large vugs and fractures. In this study, we use shape memory polymers (SMPs) to prepare programmed LCMs with various temporary shapes, which can transform to their permanent shapes with much larger dimensions as compared to their temporary shapes. A series of steps for thermomechanical programming of SMP is designed to trigger their expansion at the reservoir temperature. The dimensions of the programmed shapes can be an order of magnitude smaller than the ones for the original shapes, making their transport through the flowlines feasible, and bridging wide-opened fractures possible. The basic idea is that, after recovery, the SMP-based LCMs form an entangled network across a large width of fracture, and SMP particles recovered within the network, filling in the pores to form an effective sealing. We seek the capability of entangled ladders and interwoven fibers in forming a network across the fracture. A permeability plugging apparatus (PPA) is used to examine the efficiency of developed LCMs. The technique of 3D X-ray computed tomography (CT) is used to visualize the internal structure of formed plugs, enabling us to understand the mechanisms of bridging, plugging, and sealing.

Author(s):  
Nilesh D. Mankame ◽  
Alan L. Browne ◽  
Anupam Saxena

This paper explores the concept of reconfigurable compliant mechanisms. We define these to be fully or partially compliant mechanisms whose performance can be modified after they have been fabricated. Specifically, we are interested in the nature and extent of in situ reconfigurability in compliant mechanisms. In other words, we seek to understand the range of performance that can be achieved by these mechanisms without requiring significant reassembly. The material properties such as the storage modulus of a newly studied class of materials — shape memory polymers — vary by over an order of magnitude over a temperature range of 20 – 50 C. These polymers also allow the fixing of moderate to large strains (20 – 75%) experienced at high temperatures for extended periods of time, while retaining the ability to remember their original shape when reheated to the same high temperatures. These two properties make shape memory polymers a natural candidate for the fabrication of reconfigurable compliant mechanisms. We explore various means for introducing reconfigurability in compliant mechanisms, and from these, select a subset that is suitable for in situ reconfiguration. Quasi-static nonlinear finite element simulations are used to study the change in performance due to reconfiguration of four fully compliant mechanisms made of a shape memory polymer. Preliminary results indicate that noticeable qualitative and quantitative changes in performance can be achieved by these mechanisms.


2021 ◽  
Author(s):  
Maryam Tabatabaei ◽  
Arash Dahi Taleghani

Abstract Lost circulation problems may result in a significant downtime, a considerable reduction of the rate of penetration, or even well control problems. Despite advances in manufacturing lost circulation materials (LCMs), some formations, like heavily fractured carbonates, have complete losses during drilling. We develop smart LCMs using shape memory polymers (SMPs), and program them thermo-mechanically to satisfy size limitations imposed by bottomhole assemblies (BHA). Elevated downhole temperatures act as an external trigger to recover the permanent shape of LCMs, which could expand ten times larger than the temporary (programmed) dimensions for deployment. Smart LCMs are a combination of various material categories such as granular, fibrous (one-dimensional or 1-D) and planar (two-dimensional or 2-D) configurations that resume to the original shape after exposure to high temperatures. The LCMs form different structures such as flatted pellet, disc-shaped, spider-shaped, and spindled, which, respectively, presents grains, 1-D fibers, 2-D stars, and 2-D lattices after recovery. A combination of the above categories attempt to build three-dimensional (3-D) plugging capabilities across various sized fractures.


2008 ◽  
Author(s):  
Bernhard Hiebl ◽  
Dorothee Rickert ◽  
Rosemarie Fuhrmann ◽  
Friedrich Jung ◽  
Andres Lendlein ◽  
...  

Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


2021 ◽  
pp. 2002111
Author(s):  
Calen J. Leverant ◽  
Yifan Zhang ◽  
Maria A. Cordoba ◽  
Sin‐Yen Leo ◽  
Nilesh Charpota ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19616-19622
Author(s):  
Wenbing Li ◽  
Junhao Liu ◽  
Wanting Wei ◽  
Kun Qian

Shape memory polymers can provide excellent bonding property because of their shape memory effects. This paper proposes an adhesive unit that is capable of repeatable smart adhesion and exhibits reversible adhesion under heating.


Polymer ◽  
2021 ◽  
Vol 214 ◽  
pp. 123351
Author(s):  
Cheng Yan ◽  
Xiaming Feng ◽  
Collin Wick ◽  
Andrew Peters ◽  
Guoqiang Li

Sign in / Sign up

Export Citation Format

Share Document