Shape Memory Polymer Based Reconfigurable Compliant Mechanisms: An Exploration

Author(s):  
Nilesh D. Mankame ◽  
Alan L. Browne ◽  
Anupam Saxena

This paper explores the concept of reconfigurable compliant mechanisms. We define these to be fully or partially compliant mechanisms whose performance can be modified after they have been fabricated. Specifically, we are interested in the nature and extent of in situ reconfigurability in compliant mechanisms. In other words, we seek to understand the range of performance that can be achieved by these mechanisms without requiring significant reassembly. The material properties such as the storage modulus of a newly studied class of materials — shape memory polymers — vary by over an order of magnitude over a temperature range of 20 – 50 C. These polymers also allow the fixing of moderate to large strains (20 – 75%) experienced at high temperatures for extended periods of time, while retaining the ability to remember their original shape when reheated to the same high temperatures. These two properties make shape memory polymers a natural candidate for the fabrication of reconfigurable compliant mechanisms. We explore various means for introducing reconfigurability in compliant mechanisms, and from these, select a subset that is suitable for in situ reconfiguration. Quasi-static nonlinear finite element simulations are used to study the change in performance due to reconfiguration of four fully compliant mechanisms made of a shape memory polymer. Preliminary results indicate that noticeable qualitative and quantitative changes in performance can be achieved by these mechanisms.

Author(s):  
Michael B. Lyons ◽  
Robin Shandas

Over the last few years, we have developed shape memory polymers (SMPs) with several properties suitable for use in minimally-invasive biomedical devices. These properties include biocompatibility, the ability to fully recover large strains, the potential to serve as medication reservoirs for drug delivery, and low production cost. We and others have proposed use of shape memory polymers for various applications including cardiovascular stents, an endovascular clot removal system, and a self-tying suture.


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19616-19622
Author(s):  
Wenbing Li ◽  
Junhao Liu ◽  
Wanting Wei ◽  
Kun Qian

Shape memory polymers can provide excellent bonding property because of their shape memory effects. This paper proposes an adhesive unit that is capable of repeatable smart adhesion and exhibits reversible adhesion under heating.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1900
Author(s):  
Ramin Hosseinnezhad ◽  
Iurii Vozniak ◽  
Fahmi Zaïri

The paper discusses the possibility of using in situ generated hybrid polymer-polymer nanocomposites as polymeric materials with triple shape memory, which, unlike conventional polymer blends with triple shape memory, are characterized by fully separated phase transition temperatures and strongest bonding between the polymer blends phase interfaces which are critical to the shape fixing and recovery. This was demonstrated using the three-component system polylactide/polybutylene adipateterephthalate/cellulose nanofibers (PLA/PBAT/CNFs). The role of in situ generated PBAT nanofibers and CNFs in the formation of efficient physical crosslinks at PLA-PBAT, PLA-CNF and PBAT-CNF interfaces and the effect of CNFs on the PBAT fibrillation and crystallization processes were elucidated. The in situ generated composites showed drastically higher values of strain recovery ratios, strain fixity ratios, faster recovery rate and better mechanical properties compared to the blend.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Zhang ◽  
Hao Wang ◽  
Hongtao Wang ◽  
John You En Chan ◽  
Hailong Liu ◽  
...  

AbstractFour-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.


2020 ◽  
Vol 11 (7) ◽  
pp. 1369-1374 ◽  
Author(s):  
Wusha Miao ◽  
Weike Zou ◽  
Yingwu Luo ◽  
Ning Zheng ◽  
Qiao Zhao ◽  
...  

Polycaprolactone based thermadapt shape memory polymers with precisely controlled structures allow tunable shape reconfigurability.


2021 ◽  
pp. 1-12
Author(s):  
Maryam Tabatabaei ◽  
Arash Dahi Taleghani ◽  
Guoqiang Li ◽  
Tianyi Zhang

Summary While there have been various lost circulation materials (LCMs) available in the market for treating fractures during the drilling of oil and gas wells, there is still a demand for a technology to seal large fractures. Considering limitations on the size of the particles that can be circulated through the drilling equipment, especially the bottomhole assembly, simply enlarging conventional LCM particles becomes ineffective for sealing large vugs and fractures. In this study, we use shape memory polymers (SMPs) to prepare programmed LCMs with various temporary shapes, which can transform to their permanent shapes with much larger dimensions as compared to their temporary shapes. A series of steps for thermomechanical programming of SMP is designed to trigger their expansion at the reservoir temperature. The dimensions of the programmed shapes can be an order of magnitude smaller than the ones for the original shapes, making their transport through the flowlines feasible, and bridging wide-opened fractures possible. The basic idea is that, after recovery, the SMP-based LCMs form an entangled network across a large width of fracture, and SMP particles recovered within the network, filling in the pores to form an effective sealing. We seek the capability of entangled ladders and interwoven fibers in forming a network across the fracture. A permeability plugging apparatus (PPA) is used to examine the efficiency of developed LCMs. The technique of 3D X-ray computed tomography (CT) is used to visualize the internal structure of formed plugs, enabling us to understand the mechanisms of bridging, plugging, and sealing.


2020 ◽  
Vol 12 (11) ◽  
pp. 13464-13472 ◽  
Author(s):  
Chuanzong Li ◽  
Yunlong Jiao ◽  
Xiaodong Lv ◽  
Sizhu Wu ◽  
Chao Chen ◽  
...  

Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


Sign in / Sign up

Export Citation Format

Share Document