A Comprehensive Review of the Fourth Industrial Revolution IR 4.0 in Oil and Gas Industry

2021 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Hakki Aydin ◽  
Bahar F. Hosgor ◽  
Deniz Yagmur Kayhan ◽  
...  

Abstract Digital transformation is one of the most discussed themes across the globe. The disruptive potential arising from the joint deployment of IoT, robotics, AI and other advanced technologies is projected to be over $300 trillion over the next decade. With the advances and implementation of these technologies, they have become more widely-used in all aspects of oil and gas industry in several processes. Yet, as it is a relatively new area in petroleum industry with promising features, the industry overall is still trying to adapt to IR 4.0. This paper examines the value that Industry 4.0 brings to the oil and gas upstream industry. It delineates key Industry 4.0 solutions and analyzes their impact within this segment. A comprehensive literature review has been carried out to investigate the IR 4.0 concept's development from the beginning, the technologies it utilizes, types of technologies transferred from other industries with a longer history of use, robustness and applicability of these methods in oil and gas industry under current conditions and the incremental benefits they provide depending on the type of the field are addressed. Real field applications are illustrated with applications indifferent parts of the world with challenges, advantages and drawbacks discussed and summarized that lead to conclusions on the criteria of application of machine learning technologies.

1992 ◽  
Vol 30 (1) ◽  
pp. 4
Author(s):  
M. Jacqueline Sheppard ◽  
Mungo Hardwicke-Brown

Foreign investment has always played a significant role in Canada's petroleum industry. The authors trace the history of the regulation of foreign investment in general through its various phases: the early laissez-faire regime, followed by the Foreign Investment Review Act, followed in turn by the present Investment Canada Act. They then present a detailed review of the present regime as it applies to oil and gas acquisitions, with examples of recent cases.


2018 ◽  
Vol 465 (1) ◽  
pp. 453-462
Author(s):  
Francesco Gerali ◽  
Jonathan Craig ◽  
Fiona MacAulay ◽  
Rasoul Sorkhabi

1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Olakunle Elijah ◽  
Pang Ai Ling ◽  
Sharul Kamal Abdul Rahim ◽  
Tan Kim Geok ◽  
Agus Arsad ◽  
...  

1999 ◽  
Vol 39 (1) ◽  
pp. 584 ◽  
Author(s):  
M.M. Gagnon ◽  
K. Grice ◽  
R.I. Kagi

Field assessments using biochemical and chemical markers in marine organisms will be necessary to provide the Australian Petroleum Industry with a realistic evaluation of the impact of their activities on the marine environment. In field investigations, wild or caged animals are sacrificed and their organs are collected in order to assess if industrial activities do have a significant adverse impact on the organisms' health. Biochemical markers of chronic exposure to contamination may include reversible effects such as induction of a detoxification system, or permanent effects such as damage to nuclear DN A. Studies of sentinel species using biochemical markers of exposure, complemented by chemical analyses provide a realistic holistic method for assessment of environmental health. This multidisciplinary approach has proven valuable in Europe and North America.This paper outlines the need for biochemical and chemical markers to assess environmental health in a dynamic milieu such as the North West Shelf of Australia. Selected biochemical markers for use by the oil and gas industry in field monitoring of ecological health, and the complementary chemical measurements focussed on persistent contaminants such as poly eye lie aromatic hydrocarbons (PAHs), are described. The biological and ecotoxicological significance of the biochemical markers applied in sentinel marine organisms is reviewed, and some limitations regarding their interpretation are stated. It is suggested that biochemical monitoring of the environment complemented with sophisticated chemical measurements can provide environmental managers working within the oil and gas industry with a system for ecotoxicological monitoring programs in offshore Australia.


Author(s):  
Diane Austin ◽  
Thomas McGuire

The history of the offshore oil and gas industry in the Gulf of Mexico is one of both progressive and punctuated development. New technologies, forms of work organization, and regulatory regimes have all combined over the past seventy years to influence the evolution of this industry. This paper reports early results of a multiyear, multi-team effort to document this history and its impacts on southern Louisiana. It focuses on the work of one team, applied anthropologists from the University of Arizona, to capture the history from the perspectives of the workers and local entrepreneurs who made this industry happen.


Author(s):  
Marilia A. Ramos ◽  
Alex Almeida ◽  
Marcelo R. Martins

Abstract Several incidents in the offshore oil and gas industry have human errors among core events in incident sequence. Nonetheless, human error probabilities are frequently neglected by offshore risk estimation. Human Reliability Analysis (HRA) allows human failures to be assessed both qualitatively and quantitatively. In the petroleum industry, HRA is usually applied using generic methods developed for other types of operation. Yet, those may not sufficiently represent the particularities of the oil and gas industry. Phoenix is a model-based HRA method, designed to address limitations of other HRA methods. Its qualitative framework consists of three layers of analysis composed by a Crew Response Tree, a human response model, and a causal model. This paper applies a version of Phoenix, the Phoenix for Petroleum Refining Operations (Phoenix-PRO), to perform a qualitative assessment of human errors in the CDSM explosion. The CDSM was a FPSO designed to produce natural gas and oil to Petrobras in Brazil. On 2015 an explosion occurred leading to nine fatalities. Analyses of this accident have indicated a strong contribution of human errors. In addition to the application of the method, this paper discusses its suitability for offshore operations HRA analyses.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2116 ◽  
Author(s):  
Michael Frank ◽  
Robin Kamenicky ◽  
Dimitris Drikakis ◽  
Lee Thomas ◽  
Hans Ledin ◽  
...  

An oil and gas separator is a device used in the petroleum industry to separate a fluid mixture into its gaseous and liquid phases. A computational fluid dynamics (CFD) study aiming to identify key design features for optimising the performance of the device, is presented. A multiphase turbulent model is employed to simulate the flow through the separator and identify flow patterns that can impinge on or improve its performance. To verify our assumptions, we consider three different geometries. Recommendations for the design of more cost- and energy-effective separators, are provided. The results are also relevant to broader oil and gas industry applications, as well as applications involving stratified flows through channels.


2020 ◽  
Vol 8 (6) ◽  
pp. 1868-1874

Global oil prices have encouraged the development of the oil and gas industry. The passion for the revival of the oil and gas industry needs to be followed by solid steps. Efficiency is a theme in all business aspects. Enterprise Architecture (EA) is believed to be able to help realize the achievement of the company's goal. But EA implementation is challenging. The company must provide sufficient resources to ensure the EA implementation goal is achieved. It is therefore necessary to estimate the EA implementation to detect any gaps. This research offers a method to estimate the EA in the upstream petroleum industry. The method is a combined approach of Systematic Literature Review (SLR) and structured interviews. Interviews were conducted with a modified System Usability Scale (SUS) using the perspective of effectiveness, efficiency, agility, and durability. The evaluation results concluded that the EA implementation was still below the usability threshold. This fact encourages further EA development efforts, including the selection and utilization of specific and simple EA components.


2018 ◽  
Vol 465 (1) ◽  
pp. 1.1-24 ◽  
Author(s):  
Jonathan Craig ◽  
Francesco Gerali ◽  
Fiona MacAulay ◽  
Rasoul Sorkhabi

Sign in / Sign up

Export Citation Format

Share Document