Applied Mechanics Problems in the Oil and Gas Industry

1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.

2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
Armstrong Lee Agbaji

Abstract Historically, the oil and gas industry has been slow and extremely cautious to adopt emerging technologies. But in the Age of Artificial Intelligence (AI), the industry has broken from tradition. It has not only embraced AI; it is leading the pack. AI has not only changed what it now means to work in the oil industry, it has changed how companies create, capture, and deliver value. Thanks, or no thanks to automation, traditional oil industry skills and talents are now being threatened, and in most cases, rendered obsolete. Oil and gas industry day-to-day work is progressively gravitating towards software and algorithms, and today’s workers are resigning themselves to the fact that computers and robots will one day "take over" and do much of their work. The adoption of AI and how it might affect career prospects is currently causing a lot of anxiety among industry professionals. This paper details how artificial intelligence, automation, and robotics has redefined what it now means to work in the oil industry, as well as the new challenges and responsibilities that the AI revolution presents. It takes a deep-dive into human-robot interaction, and underscores what AI can, and cannot do. It also identifies several traditional oilfield positions that have become endangered by automation, addresses the premonitions of professionals in these endangered roles, and lays out a roadmap on how to survive and thrive in a digitally transformed world. The future of work is evolving, and new technologies are changing how talent is acquired, developed, and retained. That robots will someday "take our jobs" is not an impossible possibility. It is more of a reality than an exaggeration. Automation in the oil industry has achieved outcomes that go beyond human capabilities. In fact, the odds are overwhelming that AI that functions at a comparable level to humans will soon become ubiquitous in the industry. The big question is: How long will it take? The oil industry of the future will not need large office complexes or a large workforce. Most of the work will be automated. Drilling rigs, production platforms, refineries, and petrochemical plants will not go away, but how work is done at these locations will be totally different. While the industry will never entirely lose its human touch, AI will be the foundation of the workforce of the future. How we react to the AI revolution today will shape the industry for generations to come. What should we do when AI changes our job functions and workforce? Should we be training AI, or should we be training humans?


Author(s):  
Х. Р. Асхабов ◽  
Р. И. Ахъядов ◽  
Ю. Х. Тарамов ◽  
А. А. Эльмурзаев

В современное время нефтегазовая отрасль обладает большим потенциалом для развития экономики, благодаря чему ее регулированию уделяется внимание на международном уровне. К примеру, стоит упомянуть Организацию стран - экспортеров нефти, которая была создана нефтедобывающими странами в целях контроля квот добычи на нефть. Актуальность публикации заключается в том, что на сегодняшний день нефтяная отрасль продолжает оказывать значительное влияние на экономику стран, чье устойчивое развитие определяется успешным развитием нефтяной промышленности. Рассмотреть, проанализировать и обозначить, на наш взгляд, перспективы эффективного развития отраслей нефтяной промышленности Российской Федерации, по сравнению с развитием нефтяной промышленности гигантов данной отрасли - Саудовской Аравии и Соединенных Штатов Америки, явилось целью исследования в данной статье. In modern times, the oil and gas industry has great potential for the development of the economy, due to which its regulation is paid attention at the international level. For example, it is worth mentioning the Organization of Petroleum Exporting Countries, which was established by oil-producing countries to control oil production quotas. The relevance of the publication is that today the oil industry continues to have a significant impact on the economies of countries whose sustainable development is determined by the successful development of the oil industry. To consider, analyse and outline, in our opinion, the prospects for the effective development of the oil industries of the Russian Federation, in comparison with the development of the oil industry of the following giants of this industry of Saudi Arabia and the United States of America, was the purpose of the study in this article.


2021 ◽  
Author(s):  
Cenk Temizel ◽  
Celal Hakan Canbaz ◽  
Hakki Aydin ◽  
Bahar F. Hosgor ◽  
Deniz Yagmur Kayhan ◽  
...  

Abstract Digital transformation is one of the most discussed themes across the globe. The disruptive potential arising from the joint deployment of IoT, robotics, AI and other advanced technologies is projected to be over $300 trillion over the next decade. With the advances and implementation of these technologies, they have become more widely-used in all aspects of oil and gas industry in several processes. Yet, as it is a relatively new area in petroleum industry with promising features, the industry overall is still trying to adapt to IR 4.0. This paper examines the value that Industry 4.0 brings to the oil and gas upstream industry. It delineates key Industry 4.0 solutions and analyzes their impact within this segment. A comprehensive literature review has been carried out to investigate the IR 4.0 concept's development from the beginning, the technologies it utilizes, types of technologies transferred from other industries with a longer history of use, robustness and applicability of these methods in oil and gas industry under current conditions and the incremental benefits they provide depending on the type of the field are addressed. Real field applications are illustrated with applications indifferent parts of the world with challenges, advantages and drawbacks discussed and summarized that lead to conclusions on the criteria of application of machine learning technologies.


1999 ◽  
Vol 39 (1) ◽  
pp. 584 ◽  
Author(s):  
M.M. Gagnon ◽  
K. Grice ◽  
R.I. Kagi

Field assessments using biochemical and chemical markers in marine organisms will be necessary to provide the Australian Petroleum Industry with a realistic evaluation of the impact of their activities on the marine environment. In field investigations, wild or caged animals are sacrificed and their organs are collected in order to assess if industrial activities do have a significant adverse impact on the organisms' health. Biochemical markers of chronic exposure to contamination may include reversible effects such as induction of a detoxification system, or permanent effects such as damage to nuclear DN A. Studies of sentinel species using biochemical markers of exposure, complemented by chemical analyses provide a realistic holistic method for assessment of environmental health. This multidisciplinary approach has proven valuable in Europe and North America.This paper outlines the need for biochemical and chemical markers to assess environmental health in a dynamic milieu such as the North West Shelf of Australia. Selected biochemical markers for use by the oil and gas industry in field monitoring of ecological health, and the complementary chemical measurements focussed on persistent contaminants such as poly eye lie aromatic hydrocarbons (PAHs), are described. The biological and ecotoxicological significance of the biochemical markers applied in sentinel marine organisms is reviewed, and some limitations regarding their interpretation are stated. It is suggested that biochemical monitoring of the environment complemented with sophisticated chemical measurements can provide environmental managers working within the oil and gas industry with a system for ecotoxicological monitoring programs in offshore Australia.


Author(s):  
Marilia A. Ramos ◽  
Alex Almeida ◽  
Marcelo R. Martins

Abstract Several incidents in the offshore oil and gas industry have human errors among core events in incident sequence. Nonetheless, human error probabilities are frequently neglected by offshore risk estimation. Human Reliability Analysis (HRA) allows human failures to be assessed both qualitatively and quantitatively. In the petroleum industry, HRA is usually applied using generic methods developed for other types of operation. Yet, those may not sufficiently represent the particularities of the oil and gas industry. Phoenix is a model-based HRA method, designed to address limitations of other HRA methods. Its qualitative framework consists of three layers of analysis composed by a Crew Response Tree, a human response model, and a causal model. This paper applies a version of Phoenix, the Phoenix for Petroleum Refining Operations (Phoenix-PRO), to perform a qualitative assessment of human errors in the CDSM explosion. The CDSM was a FPSO designed to produce natural gas and oil to Petrobras in Brazil. On 2015 an explosion occurred leading to nine fatalities. Analyses of this accident have indicated a strong contribution of human errors. In addition to the application of the method, this paper discusses its suitability for offshore operations HRA analyses.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2116 ◽  
Author(s):  
Michael Frank ◽  
Robin Kamenicky ◽  
Dimitris Drikakis ◽  
Lee Thomas ◽  
Hans Ledin ◽  
...  

An oil and gas separator is a device used in the petroleum industry to separate a fluid mixture into its gaseous and liquid phases. A computational fluid dynamics (CFD) study aiming to identify key design features for optimising the performance of the device, is presented. A multiphase turbulent model is employed to simulate the flow through the separator and identify flow patterns that can impinge on or improve its performance. To verify our assumptions, we consider three different geometries. Recommendations for the design of more cost- and energy-effective separators, are provided. The results are also relevant to broader oil and gas industry applications, as well as applications involving stratified flows through channels.


2015 ◽  
Vol 10 (2) ◽  
pp. 118-131 ◽  
Author(s):  
Kwesi Amponsah-Tawiah ◽  
Kwasi Dartey-Baah ◽  
Kobena Osam

Purpose – This paper aims to examine the potential impact of the presence of oil resource on the Ghanaian society. Specifically, the paper investigates the relationship between key stakeholders in the oil sector, how stakeholder interactions create the potential for collision and advances measures aimed at turning possible collision into cooperation. Design/methodology/approach – The paper uses a literature review-based approach, drawing on existing literature in a number of areas including corporate social responsibility (CSR), oil and gas industry in Ghana and Nigeria as well as communication. Findings – The paper advances that expectations of stakeholders as regards oil being a panacea to all their problems must be managed to avoid possible collision. Additionally, Ghana’s oil industry must identify and engage all stakeholders in planning suitable and sustainable CSR programmes for economic development, thus fostering a friendly environment for oil companies. Transparency and accountability are also needed to promote cooperation rather than collision among stakeholders in Ghana’s oil industry. Originality/value – This paper raises and brings to the fore critical issues that can lead to potential collisions in the oil and gas industry in Ghana if not well-managed, and thus an innovative work in that regard.


2020 ◽  
Vol 8 (6) ◽  
pp. 1868-1874

Global oil prices have encouraged the development of the oil and gas industry. The passion for the revival of the oil and gas industry needs to be followed by solid steps. Efficiency is a theme in all business aspects. Enterprise Architecture (EA) is believed to be able to help realize the achievement of the company's goal. But EA implementation is challenging. The company must provide sufficient resources to ensure the EA implementation goal is achieved. It is therefore necessary to estimate the EA implementation to detect any gaps. This research offers a method to estimate the EA in the upstream petroleum industry. The method is a combined approach of Systematic Literature Review (SLR) and structured interviews. Interviews were conducted with a modified System Usability Scale (SUS) using the perspective of effectiveness, efficiency, agility, and durability. The evaluation results concluded that the EA implementation was still below the usability threshold. This fact encourages further EA development efforts, including the selection and utilization of specific and simple EA components.


2020 ◽  
Vol 17 (1) ◽  
pp. 69-78 ◽  
Author(s):  
L. A. Chaldaeva ◽  
T. I. Chinaeva ◽  
A. S. Bogopolskiy

Purpose of the study. The oil and gas industry occupies an important place in the Russian economy. The financial position of any organization is determined by its financial results, where profit is a key indicator in a market economy and an indicator of the success of the company. The aim of this work is to study the state and development of the oil and gas industry, analysis of the main financial indicators, characterizing the activities of a number of oil producing companies selected in the SPARK database using economic and statistical methods.Materials and methods. The research information base is statistical data and analytical information reflecting the financial component of the oil and gas industry. The research methodological base is represented by economic and statistical methods of information analysis.Results. The analysis of the main trends in the development of trade in the international oil trade is carried out, the key determinants of the modern world oil market are highlighted, the economic situation in the Russian oil industry is analyzed, which showed that there is a decrease in oil production associated with the OPEC + agreements; the share of exports of crude oil increases; the share of exports of refined oil decreases; the government is developing measures to reduce the dependence of budget revenues on the oil and gas industry.The main types of profit, such as gross profit, sales profit, before-tax profit, net profit are considered. It is worth noting that these categories of profit are interconnected, since one category follows from another, depending on the items of income and expense inherent in a particular type of profit. The analysis of a number of indicators, characterizing the financial activities of organizations of the oil and gas complex was carried out, the totality of oil producing organizations based on the SPARK database was selected, and a comparative analysis of the financial activities of two organizations of the oil and gas complex was carried out.Conclusion. The oil and gas industry is a key sector of the economy, making a significant contribution to the social and economic development of our country. Revenues from the activities of the oil and gas complex make a significant contribution to the country’s GDP and are a significant component of the budget.In this paper, an analysis of a number of financial and economic indicators, characterizing the activities of organizations of the oil and gas complex was carried out. The financial condition of the organization is largely determined by its financial results – profit or loss. The main indicators of the financial results of the organization are profit and profitability, which depend on many internal and external factors. Including, industry features have a great influence. A set of oil-producing organizations based on the SPARK database was selected in the work. By the example of organizations JSC “IDELOIL” and Ltd “NEDRA-K”, a comparative analysis of financial and economic indicators was carried out, directions for increasing gross profit and gross margin indicators were proposed and justified in order to reduce costs and increase revenues.As a result, it was concluded that the oil industry in Russia depends on political and economic factors, in this regard, it is necessary to regularly analyze the activities of organizations in this industry to identify miscalculations, low-active functioning systems, etc., with the purpose of more efficient functioning of the industry.


Sign in / Sign up

Export Citation Format

Share Document