Utilizing Capillary Pressure Measurements and Water Saturation Logs to Determine Reservoir Quality in a Giant Middle Eastern Carbonate Field

2021 ◽  
Author(s):  
Bashar Alramahi ◽  
Qaed Jaafar ◽  
Hisham Al-Qassab

Abstract Classifying rock facies and estimating permeability is particularly challenging in Microporous dominated carbonate rocks. Reservoir rock types with a very small porosity range could have up to two orders of magnitude permeability difference resulting in high uncertainty in facies and permeability assignment in static and dynamic models. While seismic and conventional porosity logs can guide the mapping of large scale features to define resource density, estimating permeability requires the integration of advanced logs, core measurements, production data and a general understanding of the geologic depositional setting. Core based primary drainage capillary pressure measurements, including porous plate and mercury injection, offer a valuable insight into the relation between rock quality (i.e., permeability, pore throat size) and water saturation at various capillary pressure levels. Capillary pressure data was incorporated into a petrophysical workflow that compares current (Archie) water saturation at a particular height above free water level (i.e., capillary pressure) to the expected water saturation from core based capillary pressure measurements of various rock facies. This was then used to assign rock facies, and ultimately, estimate permeability along the entire wellbore, differentiating low quality microporous rocks from high quality grainstones with similar porosity values. The workflow first requires normalizing log based water saturations relative to structural position and proximity to the free water level to ensure that the only variable impacting current day water saturation is reservoir quality. This paper presents a case study where this workflow was used to detect the presence of grainstone facies in a giant Middle Eastern Carbonate Field. Log based algorithms were used to compare Archie water saturation with primary drainage core based saturation height functions of different rock facies to detect the presence of grainstones and estimate their permeability. Grainstones were then mapped spatially over the field and overlaid with field wide oil production and water injection data to confirm a positive correlation between predicted reservoir quality and productivity/injectivity of the reservoir facies. Core based permeability measurements were also used to confirm predicted permeability trends along wellbores where core was acquired. This workflow presents a novel approach in integrating core, log and dynamic production data to map high quality reservoir facies guiding future field development strategy, workover decisions, and selection of future well locations.

Author(s):  
Omar Al-Farisi ◽  
Hadi Belhaj ◽  
Fatmah Yammahi ◽  
Abdulla Al-Shemsi ◽  
Hocine Khemissa

Rock typing is one of the most important steps in reservoir modeling, and it’s the main task in reservoir characterization. In carbonate, the rock typing work that’s been performed during the last two decades had a little progress in term of providing reliable estimation of reservoir behavior. However, the development of Conjunction Rock Properties Convergence, CROPC, a carbonate rock typing concept that provided an important and easy solution to the carbonate rock typing gaps, has a major breakthrough, even though, CROPC methodology was developed to capture the single pore network through the conjunction of Lithology, permeability, capillary pressure and water saturation. Therefore, the need to identify more complex carbonate pore network had led to the initiation of developing the Carbonate Rock Type Matrix RocMat, which will be detailed in this paper, as part of a Master of Science research project. In this novel concept the carbonate rocks were classified into homogeneous, single pore network, and heterogeneous rocks, dual and triple pore network with the utilization of the effective petrophysical properties of permeability, capillary pressure, saturation, porosity and height above free water level, all were classified in a conjunction matrix that honors these properties and at the same time enables generating sub groups as down scaling and estimation for unseen groups with infinite rock complexity capturing, at the same time it enables the ease to lump the groups and generates upscale-groups that make it easier for utilization by the geologist and reservoir engineers to achieve the objective of better reservoir performance prediction, the work was performed and then tested in two carbonate offshore fields data. This RocMat was structured to be the ultimate catalog for carbonate rock types.


Author(s):  
K.V. Kovalenko ◽  
◽  
M.S. Khokhlova ◽  
A.N. Petrov ◽  
N.I. Samokhvalov ◽  
...  

2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


Sign in / Sign up

Export Citation Format

Share Document