Utilizing Capillary Pressure Measurements and Water Saturation Logs to Determine Reservoir Quality in West Qurna-1 Field Mishrif Formation

2020 ◽  
Author(s):  
Bashar Alramahi ◽  
Qaed Jaafar ◽  
Hisham Al-Qassab
2021 ◽  
Author(s):  
Bashar Alramahi ◽  
Qaed Jaafar ◽  
Hisham Al-Qassab

Abstract Classifying rock facies and estimating permeability is particularly challenging in Microporous dominated carbonate rocks. Reservoir rock types with a very small porosity range could have up to two orders of magnitude permeability difference resulting in high uncertainty in facies and permeability assignment in static and dynamic models. While seismic and conventional porosity logs can guide the mapping of large scale features to define resource density, estimating permeability requires the integration of advanced logs, core measurements, production data and a general understanding of the geologic depositional setting. Core based primary drainage capillary pressure measurements, including porous plate and mercury injection, offer a valuable insight into the relation between rock quality (i.e., permeability, pore throat size) and water saturation at various capillary pressure levels. Capillary pressure data was incorporated into a petrophysical workflow that compares current (Archie) water saturation at a particular height above free water level (i.e., capillary pressure) to the expected water saturation from core based capillary pressure measurements of various rock facies. This was then used to assign rock facies, and ultimately, estimate permeability along the entire wellbore, differentiating low quality microporous rocks from high quality grainstones with similar porosity values. The workflow first requires normalizing log based water saturations relative to structural position and proximity to the free water level to ensure that the only variable impacting current day water saturation is reservoir quality. This paper presents a case study where this workflow was used to detect the presence of grainstone facies in a giant Middle Eastern Carbonate Field. Log based algorithms were used to compare Archie water saturation with primary drainage core based saturation height functions of different rock facies to detect the presence of grainstones and estimate their permeability. Grainstones were then mapped spatially over the field and overlaid with field wide oil production and water injection data to confirm a positive correlation between predicted reservoir quality and productivity/injectivity of the reservoir facies. Core based permeability measurements were also used to confirm predicted permeability trends along wellbores where core was acquired. This workflow presents a novel approach in integrating core, log and dynamic production data to map high quality reservoir facies guiding future field development strategy, workover decisions, and selection of future well locations.


Author(s):  
K.V. Kovalenko ◽  
◽  
M.S. Khokhlova ◽  
A.N. Petrov ◽  
N.I. Samokhvalov ◽  
...  

2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


2021 ◽  
pp. petgeo2021-016
Author(s):  
K. Bredesen ◽  
M. Lorentzen ◽  
L. Nielsen ◽  
K. Mosegaard

A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells forms the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveals that the seismic signal is more governed by porosity than water saturation changes at near-offset (or small-angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data has some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.


2021 ◽  
Author(s):  
E. P. Putra

The Globigerina Limestone (GL) is the main reservoir of the seven gas fields that will be developed in the Madura Strait Block. The GL is a heterogeneous and unique clastic carbonate. However, the understanding of reservoir rock type of this reservoir are quite limited. Rock type definition in heterogeneous GL is very important aspect for reservoir modeling and will influences field development strategy. Rock type analysis in this study is using integration of core data, wireline logs and formation test data. Rock type determination applies porosity and permeability relationship approach from core data, which related to pore size distribution, lithofacies, and diagenesis. The analysis resulted eight rock types in the Globigerina Limestone reservoir. Result suggests that rock type definition is strongly influenced by lithofacies, which is dominated by packstone and wackestone - packstone. The diagenetic process in the deep burial environment causes decreasing of reservoir quality. Then the diagenesis process turns to be shallower in marine phreatic zone and causes dissolution which increasing the reservoir quality. Moreover, the analysis of rock type properties consist of clay volume, porosity, permeability, and water saturation. The good quality of a rock type will have the higher the porosity and permeability. The dominant rock type in this study area is RT4, which is identical to packstone lithofasies that has 0.40 v/v porosity and 5.2 mD as average permeability. The packstone litofacies could be found in RT 5, 6, 7, even 8 due to the increased of secondary porosity. It could also be found at a lower RT which is caused by intensive cementation.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


Sign in / Sign up

Export Citation Format

Share Document