Geomechanical Model as the Key Step to Proppant Fracturing Success in Shallow Carbonate Reservoir of Bahrain

2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Feras Altawash ◽  
Hassan AlMannai ◽  
Sayed Abdelredy ◽  
Hamed Al Ghadhban ◽  
...  

Abstract Geomechanics play an important role in stimulation design, especially in complex tight reservoirs with very low matrix permeability. Robust modelling of stresses along with rock mechanical properties helps to identify the stress barriers which are crucial for optimum stimulation design and proppant allocation. Complex modeling and calibration workflow showcased the value of geomechanical analysis in a large stimulation project in the Ostracod-Magwa reservoir, a complicated shallow carbonate reservoir in the Bahrain Field. For the initial model, regional average rock properties and minimum stress values from earlier frack campaigns were considered. During campaign progression, advanced cross dipole sonic measurements of the new wells were incorporated in the geomechanical modeling which provided rock properties and stresses with improved confidence. The outputs from wireline-conveyed microfrac tests and the fracturing treatments were also considered for calibration of the minimum horizontal stress and breakdown pressure. The porepressure variability was established with the measured formation pressure data. The geomechanically derived horizontal stresses were used as input for the frack-design. Independent fracture geometry measurements were run to validate the model. The poro-elastic horizontal strain approach was taken to model the horizontal stresses, which shows better variability of the stress profile depending on the elastic rock properties. The study shows variable depletion in porepressure across the field as well as within different reservoir layers. The Ostracod reservoir is more depleted than Magwa, with porepressure values lower than hydrostatic (∼7 ppg). The B3 shale layer in between the Magwa and Ostracod reservoirs is a competent barrier with 1200-1500psi closure pressure. The closure pressures in the Ostracod and Magwa vary from 1000-1500psi and 1100-1600psi, respectively. There is a gradual increasing trend observed in closure pressure in Magwa with depth, but no such trend is apparent in the shallower Ostracod formation. High resolution stress profiles help to identify the barriers within each reservoir to place horizontal wells and quantify the magnitude of hydraulic fracture stress barriers along horizontal wells. The geomechanical model served as a key part of the fracturing optimization workflow, resulting in more than double increase in wells productivity compared to previous stimulation campaigns. The study also helped to optimize the selection of the clusters depth of hydraulic fracturing stages in horizontal wells. The poroelastic horizontal strain approach to constrain horizontal stresses from cross dipole sonic provides better variability in the stress profile to ultimately yield high resolution. This model, calibrated with actual frac data, is crucial for stimulation design in complex reservoirs with very low matrix permeability. The geomechanical model serves as one of the few for shallow carbonates rock in the Middle East region and can be of significant importance to many other shallow projects in the region.

2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


Author(s):  
Matthew Blyth ◽  
◽  
Naoki Sakiyama ◽  
Hiroshi Hori ◽  
Hiroaki Yamamoto ◽  
...  

A new logging-while-drilling (LWD) acoustic tool has been developed with novel ultrasonic pitch-catch and pulse-echo technologies. The tool enables both high-resolution slowness and reflectivity images, which cannot be addressed with conventional acoustic logging. Measuring formation elastic-wave properties in complex, finely layered formations is routinely attempted with sonic tools that measure slowness over a receiver array with a length of 2 ft or more depending upon the tool design. These apertures lead to processing results with similar vertical resolutions, obscuring the true slowness of any layering occurring at a finer scale. If any of these layers present significantly different elastic-wave properties than the surrounding rock, then they can play a major role in both wellbore stability and hydraulic fracturing but can be absent from geomechanical models built on routine sonic measurements. Conventional sonic tools operate in the 0.1- to 20-kHz frequency range and can deliver slowness information with approximately 1 ft or more depth of investigation. This is sufficient to investigate the far-field slowness values but makes it very challenging to evaluate the near-wellbore region where tectonic stress redistribution causes pronounced azimuthal slowness variation. This stress-induced slowness variation is important because it is also a key driver of wellbore geomechanics. Moreover, in the presence of highly laminated formations, there can be a significant azimuthal variation of slowness due to layering that is often beyond the resolution of conventional sonic tools due to their operating frequency. Finally, in horizontal wells, multiple layer slownesses are being measured simultaneously because of the depth of investigation of conventional sonic tools. This can cause significant interpretational challenges. To address these challenges, an entirely new design approach was needed. The novel pitch-catch technology operates over a wide frequency range centered at 250 kHz and contains an array of receivers having a 2-in. receiver aperture. The use of dual ultrasonic technology allows the measurement of high-resolution slowness data azimuthally as well as reflectivity and caliper images. The new LWD tool was run in both vertical and horizontal wells and directly compared with both wireline sonic and imaging tools. The inch-scale slownesses obtained show characteristic features that clearly correlate to the formation lithology and structure indicated by the images. These features are completely absent from the conventional sonic data due to its comparatively lower vertical resolution. Slowness images from the tool reflect the formation elastic-wave properties at a fine scale and show dips and lithological variations that are complementary to the data from the pulse-echo images. The physics of the measurement are discussed, along with its ability to measure near-wellbore slowness, elastic-wave properties, and stress variations. Additionally, the effect of the stress-induced, near-wellbore features seen in the slowness images and the pulse-echo images is discussed with the wireline dipole shear anisotropy processing.


2007 ◽  
Vol 10 (05) ◽  
pp. 453-457 ◽  
Author(s):  
Rajesh Kumar ◽  
S. Ramanan ◽  
J.L. Narasimham

Summary Oil productivity from Mumbai High field, an offshore multilayered carbonate reservoir, increased significantly through the implementation of a major redevelopment program. Geoscientific information available from approximately 700 exploratory and develop- ment wells drilled in the field during nearly 25 years was incorporated during geological and reservoir simulation modeling of the field. High-technology drilling (viz. horizontal/multilaterals for the new development wells) was adopted on field scale to effectively address typical complexity of the layered carbonate reservoirs. Since the commencement of the project in 2000, approximately 140 new wells were drilled, mostly with horizontal and multilateral drainholes. Besides these, more than 70 suboptimal producers were also converted as horizontal sidetracks under brownfield development. The horizontal sidetracks were drilled as long-drift sidetrack (LDST), extended-reach drilling (ERD), LDST-ERD, short-drift sidetrack (SDST), and medium-radius drainhole (MRDH) types of wells through the application of innovative and emerging drilling technologies with nondamaging drilling fluids, whipstocks to kick off sidetrack wells, rotary-steering systems, and expandable tubulars to complete horizontal sidetracks in lower layers. With the implementation of this project, the declining trend was fully arrested and a significant upward trend in production has been established. Introduction The field redevelopment process requires the intergration of reservoir-development strategies, facility options, and drilling and production philosophies to maximize oil and gas recovery from a matured field. A significant number of case studies are available on mature field revitalization using a multidisciplinary team concept, exhaustive geo-scientific data analysis, and new drilling technologies (Chedid and Colmenares 2002; Clark et al. 2000; Dollens et al. 1999; Kinchen et al. 2001). Advancements in drilling and completion technology have enabled construction of horizontal wells with longer wellbores, more-complex well geometry, and sophisticated completion designs. Horizontal wells provide an effective method to produce bypassed oil from matured fields. In the early 1980s, this technology was in the development stage and was used in limited applications. By the 1990s, the technology had matured, and its acceptance in the industry had increased significantly. Performance of horizontal/multilateral wells, risk assessment of horizontal-well productivity and comparison of horizontal- and vertical-well performance in different fields is available in literature (Babu and Aziz 1989; Brekke and Thompson 1996; Economides et al. 1989; Joshi 1987; Joshi and Ding 1995; Mukherjee and Economides 1991; Norris et al. 1991; Vij et al. 1998). A significant number of horizontal/multilateral development wells were drilled as a part of redevelopment of Mumbai High, a matured multilayered carbonate offshore field in Western India. The details of new technologies applied and performance of these new high-technology wells are presented in this paper. Besides comparison of well productivity of horizontal and conventional sidetrack wells, this paper presents some technical issues faced.


1992 ◽  
Author(s):  
J. M. Harris ◽  
Richard Nolen‐Hoeksema ◽  
J. W. Rector ◽  
M. Van Schaack ◽  
S. K. Lazaratos

2021 ◽  
Author(s):  
Jianguo Zhang ◽  
Karthik Mahadev ◽  
Stephen Edwards ◽  
Alan Rodgerson

Abstract Maximum horizontal stress (SH) and stress path (change of SH and minimum horizontal stress with depletion) are the two most difficult parameters to define for an oilfield geomechanical model. Understanding these in-situ stresses is critical to the success of operations and development, especially when production is underway, and the reservoir depletion begins. This paper introduces a method to define them through the analysis of actual minifrac data. Field examples of applications on minifrac failure analysis and operational pressure prediction are also presented. It is commonly accepted that one of the best methods to determine the minimum horizontal stress (Sh) is the use of pressure fall-off analysis of a minifrac test. Unlike Sh, the magnitude of SH cannot be measured directly. Instead it is back calculated by using fracture initiation pressure (FIP) and Sh derived from minifrac data. After non-depleted Sh and SH are defined, their apparent Poisson's Ratios (APR) are calculated using the Eaton equation. These APRs define Sh and SH in virgin sand to encapsulate all other factors that influence in-situ stresses such as tectonic, thermal, osmotic and poro-elastic effects. These values can then be used to estimate stress path through interpretation of additional minifrac data derived from a depleted sand. A geomechanical model is developed based on APRs and stress paths to predict minifrac operation pressures. Three cases are included to show that the margin of error for FIP and fracture closure pressure (FCP) is less than 2%, fracture breakdown pressure (FBP) less than 4%. Two field cases in deep-water wells in the Gulf of Mexico show that the reduction of SH with depletion is lower than that for Sh.


2019 ◽  
Author(s):  
Yevgeniy Karpekin ◽  
Svetlana Orlova ◽  
Rustam Tukhtaev ◽  
Alexey Ovchinnikov ◽  
Vitaly Kuntsevich

Sign in / Sign up

Export Citation Format

Share Document