3-D Geomechanical Analysis of Refracturing of Horizontal Wells

Author(s):  
Dharmendra Kumar ◽  
Ahmad Ghassemi
2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Feras Altawash ◽  
Hassan AlMannai ◽  
Sayed Abdelredy ◽  
Hamed Al Ghadhban ◽  
...  

Abstract Geomechanics play an important role in stimulation design, especially in complex tight reservoirs with very low matrix permeability. Robust modelling of stresses along with rock mechanical properties helps to identify the stress barriers which are crucial for optimum stimulation design and proppant allocation. Complex modeling and calibration workflow showcased the value of geomechanical analysis in a large stimulation project in the Ostracod-Magwa reservoir, a complicated shallow carbonate reservoir in the Bahrain Field. For the initial model, regional average rock properties and minimum stress values from earlier frack campaigns were considered. During campaign progression, advanced cross dipole sonic measurements of the new wells were incorporated in the geomechanical modeling which provided rock properties and stresses with improved confidence. The outputs from wireline-conveyed microfrac tests and the fracturing treatments were also considered for calibration of the minimum horizontal stress and breakdown pressure. The porepressure variability was established with the measured formation pressure data. The geomechanically derived horizontal stresses were used as input for the frack-design. Independent fracture geometry measurements were run to validate the model. The poro-elastic horizontal strain approach was taken to model the horizontal stresses, which shows better variability of the stress profile depending on the elastic rock properties. The study shows variable depletion in porepressure across the field as well as within different reservoir layers. The Ostracod reservoir is more depleted than Magwa, with porepressure values lower than hydrostatic (∼7 ppg). The B3 shale layer in between the Magwa and Ostracod reservoirs is a competent barrier with 1200-1500psi closure pressure. The closure pressures in the Ostracod and Magwa vary from 1000-1500psi and 1100-1600psi, respectively. There is a gradual increasing trend observed in closure pressure in Magwa with depth, but no such trend is apparent in the shallower Ostracod formation. High resolution stress profiles help to identify the barriers within each reservoir to place horizontal wells and quantify the magnitude of hydraulic fracture stress barriers along horizontal wells. The geomechanical model served as a key part of the fracturing optimization workflow, resulting in more than double increase in wells productivity compared to previous stimulation campaigns. The study also helped to optimize the selection of the clusters depth of hydraulic fracturing stages in horizontal wells. The poroelastic horizontal strain approach to constrain horizontal stresses from cross dipole sonic provides better variability in the stress profile to ultimately yield high resolution. This model, calibrated with actual frac data, is crucial for stimulation design in complex reservoirs with very low matrix permeability. The geomechanical model serves as one of the few for shallow carbonates rock in the Middle East region and can be of significant importance to many other shallow projects in the region.


2020 ◽  
pp. 1994-2003
Author(s):  
Shaban Dharb Shaban ◽  
Hassan Abdul Hadi

Zubair oilfield is an efficient contributor to the total Iraqi produced hydrocarbon. Drilling vertical wells as well as deviated and horizontal wells have been experiencing intractable challenges. Investigation of well data showed that the wellbore instability issues were the major challenges to drill in Zubair oilfield. These experienced borehole instability problems are attributed to the increase in the nonproductive time (NPT). This study can assist in managing an investment-drilling plan with less nonproductive time and more efficient well designing.       To achieve the study objectives, a one dimension geomechanical model (1D MEM) was constructed based on open hole log measurements, including Gamma-ray (GR), Caliper (CALI), Density (RHOZ), sonic compression (DTCO) and shear (DTSM) wave velocities , and Micro imager log (FMI). The determined 1D MEM components, i.e., pore pressure, rock mechanical properties, in-situ principal stress magnitudes and orientations, were calibrated using the data acquired from repeated formation test (RFT), hydraulic fracturing test (Mini-frac), and laboratory rock core mechanical test (triaxial test). Then, a validation model coupled with three failure criteria, i.e., Mohr-Coulomb, Mogi-Coulomb, and Modified lade, was conducted using the Caliper and Micro-imager logs. Finally, sensitivity and forecasting stability analyses were implemented to predict the most stable wellbore trajectory concerning the safe mud window for the planned wells.    The implemented wellbore instability analysis utilizing Mogi-Coulomb criterion demonstrated that the azimuth of 140o paralleling to the minimum horizontal stress is preferable to orient deviated and horizontal wells. The vertical and slightly deviated boreholes (1ess than 30o) are the most stable wellbores, and they are recommended to be drilled with 11.6 -12 ppg mud weight. The highly deviated and horizontal wells are recommended to be drilled with a mud weight of 12-12.6 ppg.


2021 ◽  
Vol 40 (11) ◽  
pp. 805-814
Author(s):  
Michał Kępiński ◽  
Pramit Basu ◽  
David Wiprut ◽  
Marek Koprianiuk

This paper presents a shale gas field geomechanics case study in the Peri-Baltic Syneclise (northern Poland). Polish Oil and Gas Company drilled a vertical well, W-1, and stimulated the Silurian target. Next, a horizontal well, W-2H, drilled the Ordovician target and partially collapsed. The remaining interval was stimulated, and microseismic monitoring was performed. A second horizontal well, W-3H, was drilled at the same azimuth as W-2H, but the well collapsed in the upper horizontal section (Silurian). A geomechanical earth model was constructed that matches the drilling experiences and well failure observations found in wells W-1, W-2H, and W-3H. The field was found to be in a strike-slip faulting stress regime, heavily fractured, with weak bedding contributing to the observed drilling problems. An analysis of safe mud weights, optimal casing setting depths, and optimal drilling directions was carried out for a planned well, W-4H. Specific recommendations are made to further enhance the model in any future studies. These recommendations include data acquisition and best practices for the planned well.


2015 ◽  
Author(s):  
Anzar Syed ◽  
Jason Patterson ◽  
Erick Supriyanto ◽  
Ding Hsu ◽  
Ade Surya Setiawan ◽  
...  

2017 ◽  
Vol 11 ◽  
pp. 34-39
Author(s):  
R.R. Giniatullin ◽  
◽  
V.V. Kireev ◽  
R.R. Galimyllin ◽  
N.G. Bravkova ◽  
...  
Keyword(s):  

Author(s):  
K.V. Valovsky ◽  
◽  
G.Yu. Basos ◽  
V.M. Valovsky ◽  
A.V. Artyukhov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document