Imbibition Relative Permeability in Unconsolidated Porous Media

1962 ◽  
Vol 2 (01) ◽  
pp. 13-17 ◽  
Author(s):  
J. Naar ◽  
R.J. Wygal ◽  
J.H. Henderson

Abstract Experimental work is reported which shows that consolidated rocks and unconsolidated porous media exhibit different imbibition flow behavior. At a given saturation the imbibition nonwetting permeabilities for a rock are smaller than the drainage permeabilities. The contrary happens for unconsolidated aggregates - imbibition nonwetting permeabilities are larger than drainage ones. A similar difference is observed for the wetting phase. Imbibition permeabilities are larger than drainage ones for a consolidated rock but smaller than drainage permeabilities for an unconsolidated medium. The results of these differences are examined for two cases.Flooding Efficiency - Craig's scheme for the computation of production history of a five-spot water flood is shown to agree extremely well with experimental results obtained when using a system packed with glass spheres if imbibition relative permeability curves are used.Alcohol-Slug Displacement - Published theory on oil displacement by alcohol slugs bas been questioned despite the apparent agreement between predicted and observed results. The present work suggests that, if imbibition relative permeability curves characteristic of the unconsolidated media used in the early experiments had been available to make the predictions, the inadequacy of the theory would have been immediately evident. The experimental work shows that poorly consolidated formations tend to behave like unconsolidated media. Finally, it is shown that the difference in imbibition behavior is directly related to pore-size distribution and cementation. PART 1 - THE FLOW BEHAVIOR OF UNCONSOLIDATED AGGREGATES Introduction Experiments on scaled models of field reservoirs are useful for studying new displacement processes which are incompletely understood. Even when a mathematical description is possible, the solution might be difficult and complex. An answer obtained from a scaled model is extremely valuable in such cases. A great amount of work, therefore, has been devoted to the derivation of scaling laws. Similarity groups have been defined which assumethat the relative permeability curves of the prototype and the model are the same whether the displacement is an imbibition or a drainage process andthat there is a linear relationship between the capillary pressure of the model and the prototype. For practical reasons (simplicity in the preparation of models, duration of the experiments, etc.), the porous media of laboratory models are usually unconsolidated packs of sand or glass particles. Hence, unless the capillary and flow characteristics of unconsolidated and consolidated systems are identical, the model data are applicable only to unconsolidated formations. The usefulness of scaled-model studies may then be seriously restricted since most oil-bearing sands are consolidated. Perkins and Collins suggested the use of model and prototype curves normalized with respect to both relative permeability and saturation to improve compliance with scaling criteria. Even this technique does not give a satisfactory model-prototype match. This paper reports an observation of two-phase flow in unconsolidated sands which shows that, for most displacements, "scaling" in the strict sense of the word is not even qualitatively feasible with a sand model. It provides, however, a firm foundation for testing a theory by matching it with observed performance of laboratory-size models. EXPERIMENTAL As a part of a basic study of packed aggregates, the relative permeability of glass-spheres and sand-grain packs was measured with capillary control. The fluids were oil and air. SPEJ

1965 ◽  
Vol 5 (04) ◽  
pp. 329-332 ◽  
Author(s):  
Larman J. Heath

Abstract Synthetic rock with predictable porosity and permeability bas been prepared from mixtures of sand, cement and water. Three series of mixes were investigated primarily for the relation between porosity and permeability for certain grain sizes and proportions. Synthetic rock prepared of 65 per cent large grains, 27 per cent small grains and 8 per cent Portland cement, gave measurable results ranging in porosity from 22.5 to 40 per cent and in permeability from 0.1 darcies to 6 darcies. This variation in porosity and permeability was caused by varying the amount of blending water. Drainage- cycle relative permeability characteristics of the synthetic rock were similar to those of natural reservoir rock. Introduction The fundamental behavior characteristics of fluids flowing through porous media have been described in the literature. Practical application of these flow characteristics to field conditions is too complicated except where assumptions are overly simplified. The use of dimensionally scaled models to simulate oil reservoirs has been described in the literature. These and other papers have presented the theoretical and experimental justification for model design. Others have presented elements of model construction and their operation. In most investigations the porous media have consisted of either unconsolidated sand, glass beads, broken glass or plastic-impregnated granular substances-materials in which the flow behavior is not identical to that in natural reservoir rock. The relative permeability curves for unconsolidated sands differ from those for consolidated sandstone. The effect of saturation history on relative permeability measurements A discussed by Geffen, et al. Wygal has shown quite conclusively that a process of artificial cementation can be used to render unconsolidated packs into synthetic sandstones having properties similar to those of natural rock. Many theoretical and experimental studies have been made in attempts to determine the structure and properties of unconsolidated sand, the most notable being by Naar and Wygal. Others have theorized and experimented with the fundamental characteristics of reservoir rocks. This study was conducted to determine if some general relationship could be established between the size of sand grains and the porosity and permeability in consolidated binary packs. This paper presents the results obtained by changing some of the factors which affect the porosity and permeability of synthetically prepared sandstone. In addition, drainage relative permeability curves are presented. EXPERIMENTAL PROCEDURE Mixtures of Portland cement with water and aggregate generally are designed to have certain characteristics, but essentially all are planned to be impervious to water or other liquids. Synthetic sandstone simulating oil reservoir rock, however, must be designed to have a given permeability (sometimes several darcies), a porosity which is primarily the effective porosity but quantitatively similar to natural rock, and other characteristics comparable to reservoir rock, such as wettability, pore geometry, tortuosity, etc. Unconsolidated ternary mixtures of spheres gave both a theoretically computed and an experimentally observed minimum porosity of about 25 per cent. By using a particle-distribution system, one-size particle packs had reproducible porosities in the reproducible range of 35 to 37 per cent. For model reservoir studies of the prototype system, a synthetic rock having a porosity of 25 per cent or less and a permeability of 2 darcies was required. The rock bad to be uniform and competent enough to handle. Synthetic sandstone cores mere prepared utilizing the technique developed by Wygal. Some tight variations in the procedure were incorporated. The sand was sieved through U.S. Standard sieves. SPEJ P. 329ˆ


1961 ◽  
Vol 1 (02) ◽  
pp. 61-70 ◽  
Author(s):  
J. Naar ◽  
J.H. Henderson

Introduction The displacement of a wetting fluid from a porous medium by a non-wetting fluid (drainage) is now reasonably well understood. A complete explanation has yet to be found for the analogous case of a wetting fluid being spontaneously imbibed and the non-wetting phase displaced (imbibition). During the displacement of oil or gas by water in a water-wet sand, the porous medium ordinarily imbibes water. The amount of oil recovered, the cost of recovery and the production history seem then to be controlled mainly by pore geometry. The influence of pore geometry is reflected in drainage and imbibition capillary-pressure curves and relative permeability curves. Relative permeability curves for a particular consolidated sand show that at any given saturation the permeability to oil during imbibition is smaller than during drainage. Low imbibition permeabilities suggest that the non-wetting phase, oil or gas, is gradually trapped by the advancing water. This paper describes a mathematical image (model) of consolidated porous rock based on the concept of the trapping of the non-wetting phase during the imbibition process. The following items have been derived from the model.A direct relation between the relative permeability characteristics during imbibition and those observed during drainage.A theoretical limit for the fractional amount of oil or gas recoverable by imbibition.An expression for the resistivity index which can be used in connection with the formula for wetting-phase relative permeability to check the consistency of the model.The limits of flow performance for a given rock dictated by complete wetting by either oil or water.The factors controlling oil recovery by imbibition in the presence of free gas. The complexity of a porous medium is such that drastic simplifications must be introduced to obtain a model amenable to mathematical treatment. Many parameters have been introduced by others in "progressing" from the parallel-capillary model to the randomly interconnected capillary models independently proposed by Wyllie and Gardner and Marshall. To these a further complication must be added since an imbibition model must trap part of the non-wetting phase during imbibition of the wetting phase. Like so many of the previously introduced complications, this fluid-block was introduced to make the model performance fit the observed imbibition flow behavior.


10.2118/93-25 ◽  
1993 ◽  
Author(s):  
D. Brant Bennion ◽  
Gurk Sarioglu ◽  
Mark Chan ◽  
Toshiyuki Hirata ◽  
Dave Courtnage ◽  
...  

AIChE Journal ◽  
2003 ◽  
Vol 49 (10) ◽  
pp. 2472-2486 ◽  
Author(s):  
C. D. Tsakiroglou ◽  
M. A. Theodoropoulou ◽  
V. Karoutsos

Sign in / Sign up

Export Citation Format

Share Document