Steady State Bitumen-Water Relative Permeability Measurements At Elevated Temperatures In Unconsolidated Porous Media

10.2118/93-25 ◽  
1993 ◽  
Author(s):  
D. Brant Bennion ◽  
Gurk Sarioglu ◽  
Mark Chan ◽  
Toshiyuki Hirata ◽  
Dave Courtnage ◽  
...  
1993 ◽  
Author(s):  
D.B. Bennion ◽  
Gurk Sarioglu ◽  
M.Y.S. Chan ◽  
Toshiyuki Hirata ◽  
Dave Courtnage ◽  
...  

2020 ◽  
Vol 17 (36) ◽  
pp. 634-645
Author(s):  
Izzat Niazi SULAIMAN ◽  
Yahya Jirjees TAWFEEQ

Practically all studies of reservoir engineering involve detailed knowledge of fluid flow characteristics. The fluid flow performance in porous media is affected by pressure, flow rate, and volume of single fluid phases. Permeability is a measure of how well a porous media allows the flow of fluids through it. Permeability and porosity form the two significant characteristics of reservoir rocks. This research aimed to present the design of laboratory equipment to test the ability of fluid flow through different sandstone samples. Two sand core samples (coarse sand sample and fine sand sample) were tested. The laboratory findings measurements of porosity, saturation, total permeability, effective permeability, and relative permeability were evaluated. The laboratory tests were performed on partially saturated, unconsolidated core sand for two-phase fluid flow. The experimental work was developed for measuring the flow capacity achieved under the steady-state conditions method. Various grain sizes sands were selected as a porous medium to determine petrophysical properties and fluid flow capacity of the rock sample. Nitrogen and air were utilized as gas-phases, and, for liquid-phases, water was chosen as an injection fluid. The steady-state process method was used to determine the permeability and relative permeability of unconsolidated sands to water flow. Different flow rates were measured for different pressure gradients in a viscose flow. As the flow rate increases, the pressure difference also increased. It can be observed that there are a direct correlation and relationship between the flow rate and the pressure difference. The core plug's absolute permeability was measured using Darcy Equation. Absolute permeability does not depend on fluid characteristics but only on media properties. The sample container contains a more significant amount of sand, decrease the permeability, and therefore requires high pressure for fluid flowing within the sample.


2015 ◽  
Vol 73 ◽  
pp. 34-42 ◽  
Author(s):  
C.D. Tsakiroglou ◽  
C.A. Aggelopoulos ◽  
K. Terzi ◽  
D.G. Avraam ◽  
M.S. Valavanides

2020 ◽  
Vol 146 ◽  
pp. 03002
Author(s):  
Marios S. Valavanides ◽  
Matthieu Mascle ◽  
Souhail Youssef ◽  
Olga Vizika

The phenomenology of steady-state two-phase flow in porous media is recorded in SCAL relative permeability diagrams. Conventionally, relative permeabilities are considered to be functions of saturation. Yet, this has been put into challenge by theoretical, numerical and laboratory studies that have revealed a significant dependency on the flow rates. These studies suggest that relative permeability models should include the functional dependence on flow intensities. Just recently a general form of dependence has been inferred, based on extensive simulations with the DeProF model for steady-state two-phase flows in pore networks. The simulations revealed a systematic dependence of the relative permeabilities on the local flow rate intensities that can be described analytically by a universal scaling functional form of the actual independent variables of the process, namely, the capillary number, Ca, and the flow rate ratio, r. In this work, we present the preliminary results of a systematic laboratory study using a high throughput core-flood experimentation setup, whereby SCAL measurements have been taken on a sandstone core across different flow conditions -spanning 6 orders of magnitude on Ca and r. The scope is to provide a preliminary proof-of-concept, to assess the applicability of the model and validate its specificity. The proposed scaling opens new possibilities in improving SCAL protocols and other important applications, e.g. field scale simulators.


1962 ◽  
Vol 2 (01) ◽  
pp. 13-17 ◽  
Author(s):  
J. Naar ◽  
R.J. Wygal ◽  
J.H. Henderson

Abstract Experimental work is reported which shows that consolidated rocks and unconsolidated porous media exhibit different imbibition flow behavior. At a given saturation the imbibition nonwetting permeabilities for a rock are smaller than the drainage permeabilities. The contrary happens for unconsolidated aggregates - imbibition nonwetting permeabilities are larger than drainage ones. A similar difference is observed for the wetting phase. Imbibition permeabilities are larger than drainage ones for a consolidated rock but smaller than drainage permeabilities for an unconsolidated medium. The results of these differences are examined for two cases.Flooding Efficiency - Craig's scheme for the computation of production history of a five-spot water flood is shown to agree extremely well with experimental results obtained when using a system packed with glass spheres if imbibition relative permeability curves are used.Alcohol-Slug Displacement - Published theory on oil displacement by alcohol slugs bas been questioned despite the apparent agreement between predicted and observed results. The present work suggests that, if imbibition relative permeability curves characteristic of the unconsolidated media used in the early experiments had been available to make the predictions, the inadequacy of the theory would have been immediately evident. The experimental work shows that poorly consolidated formations tend to behave like unconsolidated media. Finally, it is shown that the difference in imbibition behavior is directly related to pore-size distribution and cementation. PART 1 - THE FLOW BEHAVIOR OF UNCONSOLIDATED AGGREGATES Introduction Experiments on scaled models of field reservoirs are useful for studying new displacement processes which are incompletely understood. Even when a mathematical description is possible, the solution might be difficult and complex. An answer obtained from a scaled model is extremely valuable in such cases. A great amount of work, therefore, has been devoted to the derivation of scaling laws. Similarity groups have been defined which assumethat the relative permeability curves of the prototype and the model are the same whether the displacement is an imbibition or a drainage process andthat there is a linear relationship between the capillary pressure of the model and the prototype. For practical reasons (simplicity in the preparation of models, duration of the experiments, etc.), the porous media of laboratory models are usually unconsolidated packs of sand or glass particles. Hence, unless the capillary and flow characteristics of unconsolidated and consolidated systems are identical, the model data are applicable only to unconsolidated formations. The usefulness of scaled-model studies may then be seriously restricted since most oil-bearing sands are consolidated. Perkins and Collins suggested the use of model and prototype curves normalized with respect to both relative permeability and saturation to improve compliance with scaling criteria. Even this technique does not give a satisfactory model-prototype match. This paper reports an observation of two-phase flow in unconsolidated sands which shows that, for most displacements, "scaling" in the strict sense of the word is not even qualitatively feasible with a sand model. It provides, however, a firm foundation for testing a theory by matching it with observed performance of laboratory-size models. EXPERIMENTAL As a part of a basic study of packed aggregates, the relative permeability of glass-spheres and sand-grain packs was measured with capillary control. The fluids were oil and air. SPEJ


1966 ◽  
Vol 6 (03) ◽  
pp. 261-266 ◽  
Author(s):  
L.L. Handy ◽  
P. Datta

Abstract For a wetting phase displacing a nonwetting phase from a porous medium the distribution of the residual fluid may depend on displacement conditions. Although this subject has been debated in the literature, only a few, experiments have been cited to support the various conclusions. Experimental results presented in this paper show that fluid distributions are dependent on imbibition procedures. Results agree qualitatively with predictions from the pore doublet model. if the rate of water imbibition is restricted, the nonwetting phase is trapped preferentially in the larger pores as expected. But if the rate of water imbibition is unrestricted, trapping occurs somewhat more in the smaller pores. These conclusions were deduced primarily from relative permeability measurements. Introduction Relative permeabilities are known to depend on the saturation history of the porous medium. For either continuously increasing or continuously decreasing wetting phase saturations, however, they have normally been assumed to be single-valued functions of saturation. Several investigators have compared relative permeabilities measured by different method and have reported acceptable agreement. Studies of simple models of the displacement process suggest that the distribution of residual fluids can be influenced by the displacement method. If this is so, relative permeabilities also should depend on the method of displacement. These predictions have not been supported by experimental data. The object of this paper is to investigate experimentally some of the predictions of these model studies. The particular question of importance is whether steady-state and unsteady-state methods should be expected to give the same values of relative permeability. Much of the reported data showing agreement between steady-state and unsteady-state methods have been obtained on unconsolidated sand. Johnson, Bossler and Neumann, however, compared steady-state and unsteady-state results for Weiler sandstone and found no significant difference. Levine made a detailed study of pressure and saturation distributions for a laboratory waterflood in a consolidated system but made no attempt to calculate performance from steady-state relative permeability data. Bail and Marsden in a somewhat similar set of experiments did attempt a comparison of observations with predictions but the results were inconclusive. Excluding gravity, two forces affect the distribution of wetting and nonwetting phases during an unsteady-state, immiscible displacement: viscous and capillary forces. If relative permeabilities are indeed the same when measured by steady- or unsteady-state methods, the fluid distributions at the same fluid saturations must be similar for both methods. Furthermore, the implication is that the relation between capillary and viscous forces is the same for both methods insofar as the effect on microscopic fluid distributions is concerned. Unsteady-state displacements are normally run at high rates to maximize the ratio of the viscous to capillary forces. The objective is to reduce the effect of capillary forces on macroscopic fluid distributions. For floods in which the phase which wets the porous medium displaces the nonwetting phase, capillary forces compete with viscous forces in determining fluid distributions. The residual nonwetting phase is discontinuous. Competitive aspects of viscous and capillary forces and the resulting effect on water-oil distribution in porous media have been illustrated in an elementary way using a pore doublet model. This model and predictions from it have been discussed at considerable length by Rose and Witherspoon, Rose and Cleary and by Moore and Slobod. Rose and Witherspoon show that so long as water invades the model at a rate equal to or greater than the free imbibition rate, the water will move through the larger capillary of a doublet first and trap oil in the smaller capillary. SPEJ P. 261ˆ


Sign in / Sign up

Export Citation Format

Share Document