A Comprehensive Approach for Stimulating Produced Water Injection Wells at Prudhoe Bay, Alaska

1995 ◽  
Author(s):  
J.D. Fambrough ◽  
R.H. Lane ◽  
J.C. Braden
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.


2007 ◽  
Author(s):  
Christine S.H. Dalmazzone ◽  
Amandine Le Follotec ◽  
Annie Audibert-Hayet ◽  
Allan Jeffery Twynam ◽  
Hugues M. Poitrenaud

2007 ◽  
Vol 22 (01) ◽  
pp. 59-68 ◽  
Author(s):  
Ahmed S. Abou-Sayed ◽  
Karim S. Zaki ◽  
Gary Wang ◽  
Manoj Dnyandeo Sarfare ◽  
Martin H. Harris

1998 ◽  
Author(s):  
I.A. Al-Ghamdi ◽  
A.A. Al-Hendi ◽  
O.J. Esmail

1991 ◽  
Vol 14 (1) ◽  
pp. 339-345 ◽  
Author(s):  
K. W. Glennie ◽  
L. A. Armstrong

AbstractKittiwake was discovered by well 21/18-2 within a 7th Round block, part of Production Licence P351. Highly undersaturated oil is present in the Fulmar Formation and Skagerrak Formation reservoir sequences; 70 MMBBL of reserves is in Fulmar sandstones whereas oil in the Skagerrak is mostly immovable. The field will be developed from a single 16-slot platform with initially 5 producing and 5 water-injection wells. Solution gas is removed via the Fulmar Field pipeline to St Fergus and, as from September 1990, the oil is loaded onto tankers from a single-buoy mooring.


Sign in / Sign up

Export Citation Format

Share Document