A New Method of Fall-Off Test in Water Injection Well in Tahe Oilfield

2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.

2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2013 ◽  
Vol 295-298 ◽  
pp. 3205-3208 ◽  
Author(s):  
Peng Fei Shen ◽  
Ling Li ◽  
Yong Sheng Chen ◽  
Nian Qiao Fang ◽  
Jian Li ◽  
...  

The quantity and availability of water injection are affected by geological environments in complex small fault-block oilfields, especially nearby faults. It is a general method to qualitatively determine fault sealing ability by water injection availability. The availability analysis of several injection wells can judge sealing ability of five faults of block M28-1 in JD oilfield. The water injection data show that fault F1, F4, F5 are main areas of pressure releasing for unsealing. Fault F2 and F3 are distributed on each side of the water injection well, which have a little influence on loss of water injection for sealing.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 943-951 ◽  
Author(s):  
A.. Saraf ◽  
A.H. de Zwart ◽  
Peter K. Currie ◽  
Mohammad A.J. Ali

Summary Recently, it has been shown that the presence of residual oil in a formation can have a considerable influence on the trapping mechanisms for particles present in reinjected produced water (Ali 2007; Ali et al. 2005, 2007, 2009). This article reports on a further set of extensive coreflow experiments that confirm and extend these results. The tests were conducted in a computerized-tomography (CT) scanner, allowing direct observation of the buildup of particle deposition along the core. These experiments are relevant to operational issues associated with produced-water reinjection (PWRI). In many cases, produced water is injected into formations containing oil, so reduced oil saturation is achieved rapidly in the area around the well. Even if the well is outside the oil zone, trapped oil droplets are always present in produced water, and a residual-oil zone will gradually build up around the well. Major differences are found between the deposition profiles for fully water-saturated cores and the cores having residual-oil saturation. In particular, particles penetrate deeper into the core with residual-oil saturation, and considerably more particles pass completely through the core without being trapped. The X-ray technique allows direct observation during the experiment of the deposition process inside the core, eliminating the complicating effect of any external filter cake. As a result, an analysis can be performed of the deposition parameters relevant inside the core using deep-bed-filtration theory, and the results of this analysis are presented. In particular, it is shown that the values of the filtration function determined from the CT-scan (X-ray) data are consistent with those obtained from analysis of the effluent concentration. Moreover, both methods of analysis find quite clearly that the filtration coefficient increases with decreasing flow rate. The results indicate that formation damage near a wellbore during water injection will be reduced by the presence of residual oil, and that particles will penetrate deeper into the formation. The result is also relevant to injection under fracturing conditions because particle deposition in the wall of the fracture (where residual oil may be present) is one of the mechanisms governing fracture growth.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Emad Waleed Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Gary Pope

Low salinity water injection (LSWI) is gaining popularity as an improved oil recovery technique in both secondary and tertiary injection modes. The objective of this paper is to investigate the main mechanisms behind the LSWI effect on oil recovery from carbonates through history-matching of a recently published coreflood. This paper includes a description of the seawater cycle match and two proposed methods to history-match the LSWI cycles using the UTCHEM simulator. The sensitivity of residual oil saturation, capillary pressure curve, and relative permeability parameters (endpoints and Corey’s exponents) on LSWI is evaluated in this work. Results showed that wettability alteration is still believed to be the main contributor to the LSWI effect on oil recovery in carbonates through successfully history matching both oil recovery and pressure drop data. Moreover, tuning residual oil saturation and relative permeability parameters including endpoints and exponents is essential for a good data match. Also, the incremental oil recovery obtained by LSWI is mainly controlled by oil relative permeability parameters rather than water relative permeability parameters. The findings of this paper help to gain more insight into this uncertain IOR technique and propose a mechanistic model for oil recovery predictions.


2012 ◽  
Vol 38 (3) ◽  
pp. 105-117 ◽  
Author(s):  
Barbara Tomaszewska ◽  
Leszek Pająk

Abstract When identifying the conditions required for the sustainable and long-term exploitation of geothermal resources it is very important to assess the dynamics of processes linked to the formation, migration and deposition of particles in geothermal systems. Such particles often cause clogging and damage to the boreholes and source reservoirs. Solid particles: products of corrosion processes, secondary precipitation from geothermal water or particles from the rock formations holding the source reservoir, may settle in the surface installations and lead to clogging of the injection wells. The paper proposes a mathematical model for changes in the absorbance index and the water injection pressure required over time. This was determined from the operating conditions for a model system consisting of a doublet of geothermal wells (extraction and injection well) and using the water occurring in Liassic sandstone structures in the Polish Lowland. Calculations were based on real data and conditions found in the Skierniewice GT-2 source reservoir intake. The main product of secondary mineral precipitation is calcium carbonate in the form of aragonite and calcite. It has been demonstrated that clogging of the active zone causes a particularly high surge in injection pressure during the fi rst 24 hours of pumping. In subsequent hours, pressure increases are close to linear and gradually grow to a level of ~2.2 MPa after 120 hours. The absorbance index decreases at a particularly fast rate during the fi rst six hours (Figure 4). Over the period of time analysed, its value decreases from over 42 to approximately 18 m3/h/MPa after 120 hours from initiation of the injection. These estimated results have been confi rmed in practice by real-life investigation of an injection well. The absorbance index recorded during the hydrodynamic tests decreased to approximately 20 m3/h/MPa after 120 hours.


2021 ◽  
Author(s):  
Julfree Sianturi ◽  
Bayu Setyo Handoko ◽  
Aditya Suardiputra ◽  
Radya Senoputra

Abstract Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with an extraordinary result. The paper is intending to describe the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation number. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil situated. This low salinity water reacted positively with the rock properties and in-situ fluids which was described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


2013 ◽  
Vol 295-298 ◽  
pp. 3175-3182
Author(s):  
Dan Luo ◽  
Zhao Zhong Yang ◽  
Xiao Gang Li ◽  
Zhou Su

Unified Fracture Design for fracturing optimization is a simple and reliable way to push the limit of the injection ability, reported frequently in recent years. However, most studies focus on fracture design under pseudo-steady state flow regime. The analysis of the different pressure systems between water injection well and oil production well tells us that the steady flow regime in the formation takes up most life span of water injection wells, associated with the field experience. To maximize injection capability for fractured vertical water wells under this regime, a physical optimization method is developed based on the concept of proppant number. Meanwhile, two new type curves without consideration of formation damage are obtained for quantifying the correlation between dimensionless injectivity and dimensionless conductivity. Then, calibrated design procedures accounting for gel damage and non-darcy effect, are also proposed. Finally, sensitivity studies are addressed to clarify the effect of several variables on the optimum fracture geometry.


2019 ◽  
Vol 944 ◽  
pp. 1035-1039
Author(s):  
Cai Hong Lu ◽  
Chun Feng ◽  
Li Hong Han ◽  
Jie Feng ◽  
Li Juan Zhu ◽  
...  

In this paper, in view of the problem of tubing corrosion in the water injection well, it is proposed to use the aluminizing N80 tubing to improve the corrosion problem. An aluminized layer with a thickness of about 150 μm was prepared on the surface of commonly used N80 tubing. The electrochemical polarization test at room temperature and the high temperature autoclave test for simulated water injection well environment were carried out on both of the aluminized and non-aluminized N80 tubing. It is intended to provide a feasibility test basis for the application of aluminized tubing in water injection wells by comparing the corrosion resistance performance of the aluminized and non-aluminized N80 tubing. The results showed that the aluminized layer on the surface of N80 tubing had good adhesion due to the mutual diffusion layer, and the thickness of the aluminized layer can reach 150μm. Compared with the non-aluminized N80 tubing, the self-corrosion current density of the aluminized N80 tubing polarization curve decreased obviously in the water injection well environment, and the corrosion rate in the high temperature autoclave test was also reduced to one quarter of that of the non-aluminized N80 tubing.


Sign in / Sign up

Export Citation Format

Share Document