Integrating 3D Seismic into the Reservoir Model, and Its Impact on Reservoir Management

Author(s):  
C. Scott Burns
Author(s):  
Philippe Nivlet ◽  
Nathalie Lucet ◽  
Thierry Tonellot ◽  
Olivier Lerat ◽  
Frédéric Lefeuvre ◽  
...  

2001 ◽  
Vol 41 (1) ◽  
pp. 679
Author(s):  
S. Reymond ◽  
E. Matthews ◽  
B. Sissons

This case study illustrates how 3D generalised inversion of seismic facies for reservoir parameters can be successfully applied to image and laterally predict reservoir parameters in laterally discontinuous turbiditic depositional environment where hydrocarbon pools are located in complex combined stratigraphic-structural traps. Such conditions mean that structural mapping is inadequate to define traps and to estimate reserves in place. Conventional seismic amplitude analysis has been used to aid definition but was not sufficient to guarantee presence of economic hydrocarbons in potential reservoir pools. The Ngatoro Field in Taranaki, New Zealand has been producing for nine years. Currently the field is producing 1,000 bopd from seven wells and at three surface locations down from a peak of over 1,500 bopd. The field production stations have been analysed using new techniques in 3D seismic imaging to locate bypassed oils and identify undrained pools. To define the objectives of the study, three questions were asked:Can we image reservoir pools in a complex stratigraphic and structural environment where conventional grid-based interpretation is not applicable due to lack of lateral continuity in reservoir properties?Can we distinguish fluids within each reservoir pools?Can we extrapolate reservoir parameters observed at drilled locations to the entire field using 3D seismic data to build a 3D reservoir model?Using new 3D seismic attributes such as bright spot indicators, attenuation and edge enhancing volumes coupled with 6 AVO (Amplitude Versus Offset) volumes integrated into a single class cube of reservoir properties, made the mapping of reservoir pools possible over the entire data set. In addition, four fluid types, as observed in more than 20 reservoir pools were validated by final inverted results to allow lateral prediction of fluid contents in un-drilled reservoir targets. Well production data and 3D seismic inverted volume were later integrated to build a 3D reservoir model to support updated volumetrics reserves computation and to define additional targets for exploration drilling, additional well planning and to define a water injection plan for pools already in production.


SPE Journal ◽  
2007 ◽  
Vol 12 (02) ◽  
pp. 156-166 ◽  
Author(s):  
Xian-Huan Wen ◽  
Wen H. Chen

Summary The concept of "closed-loop" reservoir management is currently receiving considerable attention in the petroleum industry. A "real-time" or "continuous" reservoir model updating technique is a critical component for the feasible application of any closed-loop, model-based reservoir management process. This technique should be able to rapidly and continuously update reservoir models assimilating the up-to-date observations of production data so that the performance predictions and the associated uncertainty are up-to-date for optimization of future development/operations. The ensemble Kalman filter (EnKF) method has been shown to be quite efficient for this purpose in large-scale nonlinear systems. Previous studies show that a relatively large ensemble size is required for EnKF to reliably assess the uncertainty, and a confirming step is recommended to ensure the consistency of the updated static and dynamic variables with the flow equations. In this paper, we further explore the capability of EnKF, focusing on some practical issues including the correction of the linear and Gaussian assumptions during filter updating with iteration, the reduction of ensemble size with a resampling scheme, and the impact of data assimilation time interval. Results from the example in this paper demonstrate that the proposed iterative EnKF performs better with more accurate predictions and less uncertainty than the traditional noniterative EnKF. The use of iteration reduces the impact of nonlinearity and non-Gaussianity. Results also show that iteration may only be required when predictions are considerably deviated from the observations. The proposed resampling scheme can significantly reduce the ensemble size necessary for reliable assessment of uncertainty with improved accuracy. Finally, we show that the noniterative EnKF is sensitive to the size of time interval between the assimilation steps. Using the proposed iterative EnKF, results are more stable, more accurate reservoir models and predictions can be obtained even when a large time interval is used. This also indicates that iteration within the EnKF updating serves as a process that corrects the stronger nonlinear and non-Gaussian behaviors when larger time interval is used. Introduction Reservoir models have become an important part of day-to-day decision analysis related to management of oil/gas fields. The closed-loop reservoir management concept (Jansen et al. 2005) allows real-time decisions to be made that maximize the production potential of a reservoir. These decisions are based on the most current information available about the reservoir model and the associated uncertainty of the information. One critical requirement in this real-time, model-based reservoir management process is the ability to rapidly estimate the reservoir models and the associated uncertainty reflecting the most current production data in a real-time fashion. Based on a number of studies, the EnKF method was shown to be well-suited for such applications compared to the traditional history-matching (HM) methods (Evensen 1999; Gu and Oliver 2006; Wen and Chen 2006).


2002 ◽  
Vol 42 (1) ◽  
pp. 83
Author(s):  
P. Fink ◽  
M. Adamson ◽  
F. Jamal ◽  
C. Stark

The Patricia and Baleen offshore gas fields are located in the northeastern part of the Gippsland Basin in southeast Australia. Although discovered by two exploration wells almost a quarter of a century ago, the two gas fields only recently have again become the focus of appraisal and subsequent development activity through OMV’s acquisition of Cultus in 1999.After the drilling of a successful appraisal well in late 1999, a high resolution 3D seismic survey was acquired in early 2000. No further data acquisition will be undertaken. Special emphasis was therefore put on maximising the value of the 3D dataset by integrating the PreSTM (Pre. Stack Time Migration) seismic and several Elastic Impedance attributes with all other available subsurface data prior to building a sophisticated stochastic reservoir model for simulation.This paper describes how the integration of leading edge seismic technology with unconventional geological modelling was used to overcome a number of major challenges in order to build a coherent static reservoir model and constrain resource uncertainty given the limited amount of wireline and core data:A large proportion of the gas fields is strongly affected by seismic tuning which would introduce significant uncertainties on GRV and GWC estimations from seismic, if not accounted for properly. Likewise all seismic and to a somewhat lesser extent basic inversion based attributes used for reservoir property determination are strongly affected by this geophysical artefact: These challenges (and seismic pitfalls) were met by inverting the conventional 3D seismic for Pand S- wave impedances and generating a set of Elastic Impedance Cubes, difference cubes and LRM Cubes (standing for the elastic constants Lambda (λ), Rho (ρ) and Mhu (μ)), defining petroacoustic properties of the reservoir rocks. These cubes were tested for mathematical dependency and used for the conditioning of the facies and porosity models.The glauconitic Gurnard reservoir contains a high fraction of conductive minerals and is almost completely bioturbated. Conventional saturation estimations based on wireline-logs and conventional sequence stratigraphic facies description did not deliver a reliable picture: Instead a facies model based on ichnofabric analysis was built and constrained with data available at the three well locations. Saturation height functions were applied separately for each facies type. The Rho-Lambda (ρλ) cube was used to condition facies distribution away from the wells.More specifically, the results presented in the paper are:Elastic Impedance inversion provided vertical seismic resolution in the order of 4 m to 10 m, thereby allowing a more accurate seismic estimation of GRV and the GWC. Lamesf Constants were extracted from seismic in order to classify lithology.A realistic facies model was built utilizing the Rho- Lambda (ρλ) cube combined with ichnofabric analysis tied to permeability and water saturation distributions.Elastic Impedance Difference cubes were successfully calculated to eliminate tuning even further and condition the stochastic porosity model.Connected volume maps were used to optimise the production well pathsThe GIIP upside volume has been upgraded compared to that based on an earlier simplistic geological reservoir model used for simulation. A more realistic P10/P90 reserves range is now supported by a number of deterministic and stochastic reservoir models.


Sign in / Sign up

Export Citation Format

Share Document