Oil Yield and Quality from Simulated In-Situ Retorting of Green River Oil Shale

1976 ◽  
Author(s):  
R.B. Needham ◽  
Arvids Judzis ◽  
A.J. Cornelius
Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123076
Author(s):  
Ranran Song ◽  
Xianglong Meng ◽  
Cong Yu ◽  
Junjie Bian ◽  
Jianzheng Su

1969 ◽  
Vol 9 (03) ◽  
pp. 287-292 ◽  
Author(s):  
J.H. Bae

Abstract A series of batch-type retorting experiments 930 degrees F were performed to investigate the effect of pressure and surrounding atmosphere on the retorting of oil shale. The experimental pressure ranged from atmospheric to 2,500 psig. pressure ranged from atmospheric to 2,500 psig. The sweeping gases used were N2, COe, H2O, NH3 and H2. We found that high pressure reduces the oil yield significantly and produces a larger volume of light hydrocarbon gases. The crude shale oil obtained at high pressure has higher aromaticity and a lower pour point than the low pressure material. The sulfur pour point than the low pressure material. The sulfur and nitrogen content in shale oil does not change significantly with increasing pressure. The effect of sweeping gas is usually small. In general, gases which decompose to yield H2 increase the oil yield at high pressure. At atmospheric pressure there is no effect. The high oil yield with H2, pressure there is no effect. The high oil yield with H2, more than 100 percent of the Fischer Assay, reported on "hydrotorting" experiments was not observed in this work. Introduction The in-situ retorting of oil shale has attracted much interest because it obviates the troublesome problem in surface retorting of mining, crushing and problem in surface retorting of mining, crushing and handling a large quantity of oil shale. The cost of these operations in the surface retorting process amounts to more than half the total production cost of shale oil. From an economic point of view, the recovery of shale oil by in-situ methods is highly desirable At present in--situ retorting is accomplished by combustion or hot gas injection, following conventional hydraulic fracturing. Explosive fracturing also has been studied. While these methods of fracturing are promising, there is still much uncertainty associated with them. On the other hand, even if an adequate mass permeability could be created, the high pressures encountered at depths of several thousand feet where oil shale commonly existwould certainly affect the thermal decomposition of oil shale. Thomas has experimentally simulated the effects of overburden pressure on the physical and mechanical properties of oil shale during underground retorting. Allred and Nielson studied the effect of pressure in reverse combustion on the yield and pressure in reverse combustion on the yield and quality of oil produced. These results are fragmentary and are applicable only to reverse combustion. Grant reported an oil yield of 35 to 40 percent of the Fischer Assay was obtained in a laboratory forward combustion experiment at 500 psig. We decided to investigate the effect of pressure on oil shale retorting because so little information was available on subjects. We sought to determine me effects of fluid pressure and surrounding atmosphere on the quantity and quality of products obtained from retorting oil slide. Results of a series of batch-type retorting experiments are reported. EXPERIMENTAL EQUIPMENT A schematic drawing of the retorting and product-collecting system is shown in Fig. 1. The pump product-collecting system is shown in Fig. 1. The pump delivers the sweeping gas at a constant rate to the retorting unit, which is maintained at the experimental pressure. The gas purged from the unit passes through pressure. The gas purged from the unit passes through a glass adapter to a centrifuge tube that is cooled by an ice-salt mixture. The gases are cooled further in the condenser that is kept at 32 degrees F and then sampled, measured through a wet-test meter, and vented. The retorting unit is an Autoclave single-ended reactor of 2–3/16-in. ID and 8–1/4-in. inside depth, rated 3,000 psi at 1000 degree F. SPEJ P. 287


1980 ◽  
Vol 20 (1) ◽  
pp. 44 ◽  
Author(s):  
A.C. Hutton ◽  
A.J. Kantsler ◽  
A.C. Cook ◽  
D.M. McKirdy

The Tertiary oil-shale deposits at Rundle in Queensland and of the Green River Formation in the western USA, together with Mesozoic deposits such as those at Julia Creek in Queensland, offer prospects of competitive recovery cost through the use of large-scale mining methods or the use of in situ processing.A framework for the classification of oil shales is proposed, based on the origin and properties of the organic matter. The organic matter in most Palaeozoic oil shales is dominantly large, discretely occurring algal bodies, referred to as alginite A. However, Tertiary oil shales of northeastern Australia are chiefly composed of numerous very thin laminae of organic matter cryptically-interbedded with mineral matter. Because the present maceral nomenclature does not adequately encompass the morphological and optical properties of most organic matter in oil shales, it is proposed to use the term alginite B for finely lamellar alginite, and the term lamosites (laminated oil shales) for oil shales which contain alginite B as their dominant organic constituent. In the Julia Creek oil shale the organic matter is very fine-grained and contains some alginite B but has a higher content of alginite A and accordingly is assigned to a suite of oil shales of mixed origin.Petrological and chemical techniques are both useful in identifying the nature and diversity of organic matter in oil shales and in assessing the environments in which they were formed. Such an understanding is necessary to develop exploration concepts for oil shales.


1984 ◽  
Vol 24 (01) ◽  
pp. 75-86 ◽  
Author(s):  
R.L. Braun ◽  
J.C. Diaz ◽  
A.E. Lewis

Abstract Lawrence Livermore Natl. Laboratory (LLNL) has developed a one-dimensional (1D) mathematical model to simulate modified in-situ (MIS) retorting of oil shale. In this paper we discuss application of the model to commercial-scale retorting conditions. The model was tested by comparing calculated values to those measured in experimental retort runs performed at LLNL. There was generally good agreement between the calculated and observed results for oil yield, temperature profiles, and the yields of most gas species. Retorting rates were generally overestimated by as much as 10%. The model is a useful tool for design and control of retort operations and to identify and interpret observations that differ from model predictions. The model was used to predict the results for MIS retorting on a commercial scale, focusing on larger retorts and larger shale particle sizes, focusing on larger retorts and larger shale particle sizes than could be investigated experimentally. Retort bed properties, particularly shale composition and particle size, play an important role in determining the recoverable fraction of oil. For a given shale composition, the inlet-gas properties can be selected to help control retort operations and to maximize oil yield. Extreme variations in oil shale grade that may be encountered as a function of depth can be dealt with by appropriate changes in the composition and flow rate of the inlet gas. In addition, we show that substituting oxygen diluted with steam or CO2 (for air or air diluted with steam) can make significant improvements in the heating value of the effluent gas. Finally, we demonstrate the feasibility of retorting through a substantial interval of very low-grade shale. Introduction LLNL has been developing technology applicable to the MIS process of extracting oil from oil shale.1,2 Our program has involved the experimental measurement of chemical reactions and reaction kinetics,3 the operation of pilot-scale retorts,4 and the development of a mathematical model of an MIS retort.5 The objective is to help establish the technical base required to evaluate and apply the MIS method on a commercial scale. A keystone of our program is the retort model, since it represents our cumulative knowledge of the chemical and physical processes involved in oil shale retorting. The retort model has been used in planning and interpreting pilot-scale retort experiments and has successfully predicted most of the results of those experiments.4 It has also been used in developing an operating strategy for a field MIS oil shale retorting experiment.6 The principal purpose of this work is to apply the retort model to a wide range of conditions for MIS retorting, focusing on larger retorts and larger shale particle sizes than can be investigated in a laboratory experiment. Before the results of those calculations are presented, the model is discussed in terms of its content and validity. Model Description The LLNL retort model is a transient, 1D treatment of a packed-bed retort. In developing the model, we adopted a mechanistic approach based on fundamental chemical and physical properties rather than empirical scaling of pilot retort experiments. The model contains no arbitrarily adjustable parameters. A complete mathematical description of the model has been given elsewhere.5 The important features, therefore, are reviewed here only briefly. Our model includes those processes believed to have the most important effects in either the hot-gas retorting mode or the forward combustion mode. The physical processes are axial convective transport of heat and mass, axial thermal dispersion, gas/solid heat transfer, intraparticle shale thermal conductivity, water vaporization and condensation, and wall heat loss. The chemical reactions within the shale particles are the release of bound water, pyrolysis of kerogen, coking of oil, pyrolysis of char, decomposition of carbonate materials, and gasification of residual organic carbon with CO2, H2O, and O2. The chemical reactions in the bulk-gas stream are the combustion and cracking of oil vapor, combustion of H2, CH4, CHx, and CO, and the water/gas shift. The model permits axial variations of initial shale composition, particle-size distribution, and bed void fraction. It also permits time-dependent variations of the composition, flow rate, and temperature of inlet gas. The governing equations for mass and energy balance are solved numerically by a semi-implicit, finite-difference method. The results of these calculations determine the oil yield, and the composition and temperature of both the gas stream and the shale particles as a function of time and location in the retort.


1978 ◽  
Vol 11 (1) ◽  
pp. 287-290
Author(s):  
Abu Ahmad ◽  
John H. George ◽  
H. Gordon Harris
Keyword(s):  

1972 ◽  
Vol 24 (01) ◽  
pp. 21-26 ◽  
Author(s):  
H.C. Carpenter ◽  
E.L. Burwell ◽  
H.W. Sohns
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document