Laboratory Investigation of Fracture Initiation Pressure and Orientation

1979 ◽  
Vol 19 (02) ◽  
pp. 129-144 ◽  
Author(s):  
W.L. Medlin ◽  
L. Masse

Abstract The mechanics of hydraulic fracture initiation have been investigated by comparing laboratory experiments with theoretical predictions based on poro-elastic behavior. Experiments were conducted poro-elastic behavior. Experiments were conducted with 4-in. (10-cm) diameter cores containing spherical and cylindrical cavities and loaded in a triaxial cell under variable confining pressure, end load, and pore pressure. Experimental results agreed with theory for nonpenetrating fracturing fluid for limited ranges of hydrostatic confining stresses for four kinds of limestone rock. With penetrating fracturing fluids, the theory was penetrating fracturing fluids, the theory was confirmed only partially. Under nonhydrostatic stress conditions, reproducibility of measurements was too poor to evaluate the theory. Fracture orientation was controlled predominantly by stress conditions and cavity geometry. Notching of cylindrical cavities failed through notch extension only if the notch depth exceeded the value predicted approximately by a simple Griffith theory predicted approximately by a simple Griffith theory equation. Field applications of all results are discussed. Introduction This paper describes a combined theoretical/ experimental investigation of the mechanics of hydraulic fracture initiation. We considered fracture initiation pressure, fracture orientation, and mode of failure for various stress conditions and wellbore geometries. Our intention has been to consider theory applicable for both field and laboratory conditions, to test this theory with laboratory experiments, and to apply the results to interpretation of field data. The laboratory experiments were designed not to duplicate field conditions so much as to provide a critical test of the theory. Some field data are examined, but it is impractical to learn much about fracture initiation from field experiments because of the limited number of quantities that can be measured. The theory presented here is more a generalization of earlier work than a development of new theory. It provides a completely general treatment of fracture initiation in spherical and cylindrical cavities for poro-elastic materials. An extension of this theory poro-elastic materials. An extension of this theory to porous materials with nonelastic behavior already has been developed by Biot and will be referred to later. We begin by presenting theory for fracture initiation in spherical and cylindrical cavities. The theoretical results are followed by descriptions of laboratory experiments that test the equations for failure pressure in these geometries under various stress conditions, using penetrating and nonpentrating fracturing fluids. The effects of notching in cylindrical cavities then are considered, and a simple model based on Griffith crack theory is developed to explain experimental results. Field applications of all results then are discussed in detail. THEORY OF FRACTURE INITIATION The theory of hydraulic fracture initiation in rock materials has been treated in successive degrees of refinement. Cases of interest are hollow sphere and long hollow cylinder geometry with penetrating and nonpenetrating fracturing fluids. penetrating and nonpenetrating fracturing fluids. Refs. 1 through 7 cover various parts of the overall picture; Rice and Cleary give the most complete picture; Rice and Cleary give the most complete analysis. We present here an independent analysis based on Biot's theory for fluid saturated porous solids. Our analysis adds little that is new to the basic literature of fracture initiation theory. It is presented mainly to provide a way to analyze presented mainly to provide a way to analyze scaling effects between field results and our laboratory experiments. We start with Biot's stress-strain relations for a fluid saturated porous solid: (1) SPEJ P. 129

2014 ◽  
Vol 7 (4) ◽  
pp. 403-430 ◽  
Author(s):  
Haiyan Zhu ◽  
Jianchun Guo ◽  
Xing Zhao ◽  
Qianli Lu ◽  
Bo Luo ◽  
...  

2015 ◽  
Vol 17 (5) ◽  
pp. 2799-2812 ◽  
Author(s):  
H. B. Jung ◽  
K. C. Carroll ◽  
S. Kabilan ◽  
D. J. Heldebrant ◽  
D. Hoyt ◽  
...  

A reversible CO2-triggered volume expansion significantly lowers the fracture initiation pressure in highly impermeable igneous rock as compared to conventional fracturing fluids.


2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


Sign in / Sign up

Export Citation Format

Share Document