principal stress direction
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1754
Author(s):  
Chi Liu ◽  
Liyong Ma ◽  
Ziyong Zhang ◽  
Zhuo Fu ◽  
Lijuan Liu

The 2524-T3 aluminum alloy was subjected to fatigue tests under the conditions of R = 0, 3.5% NaCl corrosion solution, and the loading cycles of 106, and the S-N curve was obtained. The horizontal fatigue limit was 169 MPa, which is slightly higher than the longitudinal fatigue limit of 163 MPa. In addition, detailed microstructural analysis of the micro-morphological fatigue failure features was carried out. The influence mechanism of corrosion on the fatigue crack propagation of 2524-T3 aluminum alloy was discussed. The fatigue source characterized by cleavage and fracture mainly comes from corrosion pits, whose expansion direction is perpendicular to the principal stress direction. The stable propagation zone is characterized by strip fractures. The main feature of the fracture in the fracture zone is equiaxed dimples. The larger dimples are mixed with second-phase particles ranging in size from 1 to 5 μm. There is almost a one-to-one correspondence between the dimples and the second-phase particles. The fracture mechanism of 2524 alloy at this stage is transformed into a micro-holes connection mechanism, and the nucleation of micropores is mainly derived from the second-phase particles.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guanfeng Chang ◽  
Xinzhu Hua ◽  
Jie Zhang ◽  
Peng Li

Rock excavation has experienced complex stress paths. The development of the original crack under the path of principal stress magnitude and principal stress direction is a key scientific problem that needs to be solved in rock underground engineering. The principal stress magnitude dominates the initiation and propagation of the crack and increases rock damage under the action of principal stress rotation. In this study, the theoretical calculation and numerical analysis method have been combined with the crack propagation conditions to study the stress-driven mechanism of brittle rock crack propagation under principal stress rotation. The results show that the “relative initial angle” of crack angle is being updated in time during the principal stress rotation process; once the stress is rotated, it will become the next initial crack angle; the crack propagation direction is deviated under the applied shear load, and it is always in the direction of minimum shear load, leading to a certain degree of inhibition of crack propagation depth in the initial direction. According to the results of numerical simulation, the effect of principal stress rotation caused by mining excavation is obvious and has a certain range of influence depth, the stress of surrounding rock of roadway is the highest within the depth range of 1∼2 m, and the maximum principal stress is as high as 26.89 MPa. The rotation of principal stress direction on the roadway surrounding rock surface is the strongest, which makes the surrounding rock more fragmented, and the middle principal stress and the maximum principal stress rotate about 90° counterclockwise along the Ox axis. Studying the action mechanism of principal stress rotation on fractured rock masses can provide scientific basis for geotechnical engineering design and rock mass surrounding support.


Author(s):  
Takuya Ishimoto ◽  
Keita Kawahara ◽  
Aira Matsugaki ◽  
Hiroshi Kamioka ◽  
Takayoshi Nakano

AbstractOsteocytes are believed to play a crucial role in mechanosensation and mechanotransduction which are important for maintenance of mechanical integrity of bone. Recent investigations have revealed that the preferential orientation of bone extracellular matrix (ECM) mainly composed of collagen fibers and apatite crystallites is one of the important determinants of bone mechanical integrity. However, the relationship between osteocytes and ECM orientation remains unclear. In this study, the association between ECM orientation and anisotropy in the osteocyte lacuno-canalicular system, which is thought to be optimized along with the mechanical stimuli, was investigated using male rat femur. The degree of ECM orientation along the femur longitudinal axis was significantly and positively correlated with the anisotropic features of the osteocyte lacunae and canaliculi. At the femur middiaphysis, there are the osteocytes with lacunae that highly aligned along the bone long axis (principal stress direction) and canaliculi that preferentially extended perpendicular to the bone long axis, and the highest degree of apatite c-axis orientation along the bone long axis was shown. Based on these data, we propose a model in which osteocytes can change their lacuno-canalicular architecture depending on the mechanical environment so that they can become more susceptible to mechanical stimuli via fluid flow in the canalicular channel.


2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhibo Zhang ◽  
Shujie Li ◽  
Xuanye Qin

Most of the cracks in the rock masses are in a three-dimensional (3D) state, and it is always a hot topic to reveal the mechanical mechanism of 3D crack growth. In this paper, the research on the growth behavior of 3D crack is performed through laboratory experiments and numerical simulations. Cement samples with different angles of 3D crack are prepared, and the uniaxial compression experiment is carried out. The results indicate that initiation of preexisting crack with an angle of 45° is easier and shear failure characteristics of corresponding samples are obvious. Through theoretical analysis, the preexisting crack starts to grow at the end of the short axis, along the short axis end to the long axis end of the preexisting crack, the shear effect decreases gradually, and the tearing effect increases gradually. Combined with numerical simulation, the experimental and analysis results are verified, and the preexisting crack growth process is presented. The growth direction of the preexisting crack changes from perpendicular to the crack surface to parallel principal stress direction, and the maximum growth length can reach 1.2 times the minor axis radius of the preexisting crack. The research results can provide an important theoretical basis for revealing the evolution process of the cracks in rock masses.


2021 ◽  
Vol 11 (3) ◽  
pp. 1069
Author(s):  
Hyemin Park ◽  
Wonmo Sung ◽  
Jihoon Wang

The purpose of this study is to investigate the effect of principal stress direction on the efficiency of hydraulic fracturing treatment. There are two different drilling scenarios: 1. Four horizontal wells drilled in four orthogonal directions regardless of in-situ stress condition (“Actual”). 2. Three horizontal wells drilled equivalent to “Actual” case by considering the direction of principal stress (“Proposed”). The hydraulic fracturing modeling was carried out based on well logging data and completion reports of Brushy Canyon formation, Permian Basin. In the results of “Actual” case, transverse fractures were generated in two horizontal wells drilled parallel to σhmin-dir (direction of σhmin), similar to “Proposed” case. Meanwhile, for two other wells drilled perpendicular to σhmin-dir, longitudinal fractures were generated. These obliquely deviated fractures significantly decreased the fracture spacing between the stages up to 26%. This induced great stress shadow, however, the fractures propagated straight due to the large stress anisotropy of 2000 psi (σHmax/σhmin = 1.4). Therefore, it was found that due to the different direction of fracture propagation in “Actual” case, “Proposed” case was 14.6% of stimulated reservoir volume (SRV) higher. In conclusion, for successful hydraulic fracturing treatment, the direction of horizontal well must be determined in consideration of the principal stress direction as well as stress anisotropy.


Sign in / Sign up

Export Citation Format

Share Document