A Lumped-Parameter Model for Transient Two-Phase Gas-Liquid Flow in a Wellbore

2002 ◽  
Vol 17 (01) ◽  
pp. 36-41
Author(s):  
Y.V. Fairuzov ◽  
J. Gonzalez Guevara ◽  
G. Lobato Barradas ◽  
R. Camacho Velazquez ◽  
F. Fuentes Nucamendi
1997 ◽  
Author(s):  
Y.V. Fairuzov ◽  
J. Gonzalez ◽  
G. Lobato ◽  
F. Fuentes ◽  
R. Camacho

2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


1984 ◽  
Vol 39 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Leon Troniewski ◽  
Roman Ulbrich

1997 ◽  
Vol 119 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Xiang-Dong He ◽  
Sheng Liu ◽  
Haruhiko H. Asada

This paper presents a new lumped-parameter model for describing the dynamics of vapor compression cycles. In particular, the dynamics associated with the two heat exchangers, i.e., the evaporator and the condenser, are modeled based on a moving-interface approach by which the position of the two-phase/single-phase interface inside the one-dimensional heat exchanger can be properly predicted. This interface information has never been included in previous lumped-parameter models developed for control design purpose, although it is essential in predicting the refrigerant superheat or subcool value. This model relates critical performance outputs, such as evaporating pressure, condensing pressure, and the refrigerant superheat, to actuating inputs including compressor speed, fan speed, and expansion valve opening. The dominating dynamic characteristics of the cycle around an operating point is studied based on the linearized model. From the resultant transfer function matrix, an interaction measure based on the Relative Gain Array reveals strong cross-couplings between various input-output pairs, and therefore indicates the inadequacy of independent SISO control techniques. In view of regulating multiple performance outputs in modern heat pumps and air-conditioning systems, this model is highly useful for design of multivariable feedback control.


2017 ◽  
Vol 159 ◽  
pp. 00004 ◽  
Author(s):  
German Bartkus ◽  
Igor Kozulin ◽  
Vladimir Kuznetsov

Sign in / Sign up

Export Citation Format

Share Document