Drag Reduction Characteristics of Solutions of Macromolecules In Turbulent Pipe Flow

1964 ◽  
Vol 4 (03) ◽  
pp. 203-214 ◽  
Author(s):  
J.G. Savins

Abstract Certain types of macromolecules added to otter and salt solutions flouting in turbulent motion can reduce the pressure gradient. Alternatively, the volumetric capacity of a pipe for these fluids is increased by the presence of these material. Examples presented show that the drag reduction can become significant. Thus, the presence of 0.28 per cent of a gum derivative in a solution of sodium chloride flowing at 200 gal/min in a 1.89- in. pipe yields a pressure drop which is 0.44 of the single-phase drop measured under the same conditions of turbulent flow; the addition of 0.1 per cent of a vinyl derivative to a 1-in. water line yields a through put capacity which is 1.78 of the single-phase capacity at the same pressure drop. It is further shown that these phenomena are distinctly different from previous observations with other classes of non-Newtonian systems. There a simple lowering of friction factors below the levels predicted from the resistance laws for Newtonian fluids is associated with a suppression of turbulent motion. A rational physical explanation for drag reduction is advanced. Briefly, the proposed mechanism is a storage by the molecular elastic elements of the macromolecules in solution of the kinetic energy of the turbulent motion. Introduction This study was inspired by a recent review of some paradoxical drag reduction phenomena in turbulent pipe flow. Under very moderate conditions of turbulent flow, the pressure gradient necessary to pump solutions containing certain specific kinds of polymers, fibers and metallic soaps may become appreciably lower than that required to pump the solvent, i.e., water or a low-viscosity hydrocarbon, under identical flow rates in the same conduit. As shown by our review, this phenomenon of drag reduction in turbulent duct flow was first noted during the second world war, apparently arising in connection with the development of flame warfare weapons. Since that time several papers illustrating this phenomenon have appeared: Toms, Oldroyd, Agoston et al., Bundrant and Matthews, Robertson and Mason, Ousterhout and Hall, Daily and Bugliarello, Lummus, Anderson, and Fox. That there are practical applications for techniques which increase discharge or decrease the pressure necessary to transport a liquid through a pipeline is illustrated in the patents which have issued which take advantage of this peculiar phenomenon, e.g., Mysels, Dever, Harbour, and Seifert. One also finds fragmentary evidence of this effect in the data pertaining to a few of the polymeric solutions studied by Shaver and Dodge. However, these investigators were concerned with the development of friction factor vs Reynolds number correlations for a variety of non-Newtonian solutions and suspensions, rather than in a study of drag reduction. A similar kind of drag reduction effect has been observed in gases. Sproull, for example, reports that adding dust to air flowing in turbulent motion through a pipe results in a lowering of the pressure gradient at identical flow rates. There are also military applications for reducing the drag on hydrodynamic vehicles. For example, the possibility of injecting a rheologically complex fluid into the boundary layers of bodies to reduce the skin friction has been investigated by Fabula and Granville. Along somewhat different lines are the drag reduction studies of Kramer. He has shown that skin friction can be reduced by covering the surface of a vehicle with a flexible skin. The effect is apparently due to the boundary layer being stabilized by the presence of the skin. Drag reduction by means of coexisting gas and liquid boundary layers, e.g., film boiling and continuous gas injection, has been proposed by Bradfield, Barkdoll, and Byrne, Cess and Sparrow, Sparrow, Jonsson, and Eckert. Here the skin friction occurs between a vapor and a surface rather than between a liquid and a surface. There are several references in the literature to friction-factor correlations for non-Newtonian solutions and suspensions: Shaver and Merrill, Dodge and Metzner, Clapp, and Thomas. SPEJ P. 203ˆ

1993 ◽  
Vol 115 (2) ◽  
pp. 213-221 ◽  
Author(s):  
G. W. Anderson ◽  
J. J. Rohr ◽  
S. D. Stanley

The additional skin friction effect produced by a 3M riblet surface, used in conjunction with low concentration polymer solutions, is investigated in fully developed, turbulent pipe flow. Generally at the low concentrations of Polyox 301 and guar gum studied, the absolute drag reduction of the 3M riblets appears to be independent of the polymer presence, with a maximum between 5 and 7 percent occurring around h+ = 12. Comparisons with previous polymer studies with 3M riblets, sand roughened and commercially rough surfaces are made.


2019 ◽  
Vol 18 (4) ◽  
pp. 577-588
Author(s):  
Adil A Alwan ◽  
Ali J Mohammad

This paper present a mathematical study on drag reduction by polymer additive suchas poly isobutylene (PIB) with kerosene in turbulent pipe flow by using computational fluiddynamic commercial package program (COMSOL 4.4) solution. Theoretically thecomputational study was used to calculate the pressure drop in two dimensions geometricmodel with 6m length and 80 mm width as a diameter of the pipe, Geometric shape has beendrawing by tools of the program windows, and to simulated the flow region mathematicallythe flow region is divide into very small parts (mesh generation). The model that used in themathematical modelling method was (k-?( mathematical turbulent model to study theinternal pipe flow properties. The continuity and momentum equations and two k-? modelequations have been solved by the program to obtain the theoretical results. There variablesthat used in the theoretical study were effective density, effective viscosity, inlet velocity,and outlet pressure. The boundary condition was inlet and outlet velocity, temperature, andpressure of flow, and the velocity (u=0) at the pipe wall. The theoretical calculations showthat the velocity and drag reduction percentage increases with polymer concentration andvolume flow rate increasing where maximum DR% is 15.8% at volume flow rate 500 ??minwith polymer concentration 100 ppm, pressure drop decreases with polymer concentrationincreasing. Friction factor decreases with polymer concentration increased, also shear stressdecrease with polymer concentration increasing.


2009 ◽  
Vol 41 (2) ◽  
pp. 021406 ◽  
Author(s):  
Kiyoto Mori ◽  
Hiroki Imanishi ◽  
Yoshiyuki Tsuji ◽  
Tomohiro Hattori ◽  
Masaharu Matsubara ◽  
...  

Author(s):  
Katherine Newhall ◽  
Brian Brzek ◽  
Raul Bayoan Cal ◽  
Gunnar Johansson ◽  
Luciano Castillo

Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.


2012 ◽  
Vol 40 (2) ◽  
pp. 69-77 ◽  
Author(s):  
Shinji Tamano ◽  
Kotaro Miyagawa ◽  
Yohei Morinishi ◽  
Motoyuki Itoh ◽  
Keijiro Taga

Sign in / Sign up

Export Citation Format

Share Document