Finite Element Model Simulations Associated With Hydraulic Fracturing

1982 ◽  
Vol 22 (02) ◽  
pp. 209-218 ◽  
Author(s):  
Sunder H. Advani ◽  
J.K. Lee

Abstract Recently emphasis has been placed on the development and testing of innovative well stimulation techniques for the recovery of unconventional gas resources. The design of optimal hydraulic fracturing treatments for specified reservoir conditions requires sophisticated models for predicting the induced fracture geometry and interpreting governing mechanisms. This paper presents methodology and results pertinent to hydraulic fracture modeling for the U.S. DOE's Eastern Gas Shales Program (EGSP). The presented finite-element model simulations extend available modeling efforts and provide a unified framework for evaluation of fracture dimensions and associated responses. Examples illustrating the role of multilayering, in-situ stress, joint interaction, and branched cracks are given. Selected comparisons and applications also are discussed. Introduction Selection and design of stimulation treatments for Devonian shale wells has received considerable attention in recent years1-3. The production of natural gas from such tight eastern petroliferous basins is dependent on the vertical thickness of the organically rich shale matrix, its inherent fracture system density, anisotropy, and extent, and the communication-link characteristics of the induced fracture system(s). The investigation of stimulation techniques based on resource characterization, reservoir property evaluation, theoretical and laboratory model simulations, and field testing is a logical step toward the development of commercial technology for optimizing gas production and related costs. This paper reports formulations, methodology, and results associated with analytical simulations of hydraulic fracturing for EGSP. The presented model extends work reported by Perkins and Kern,4 Nordgren,5 Geertsma and DeKlerk,6 and Geertsma and Haafkens.7 The simulations provide a finite-element model framework for studying vertically induced fracture responses with the effects of multilayering and in-situ stress considered. In this context, Brechtel et al.,8 Daneshy,9 Cleary,10 and Anderson et al.11 have done recent studies addressing specific aspects of this problem. The use of finite-element model techniques for studying mixed-mode fracture problems encountered in dendritic fracturing and vertical fracture/joint interaction also is illustrated along with application of suitable failure criteria. Vertical Hydraulic Fracture Model Formulations Coupled structural fracture mechanics and fracture fluid response models for predicting hydraulically induced fracture responses have been reported previously.12,13 These simulations incorporate specified reservoir properties, in-situ stress conditions, and stimulation treatment parameters. One shortcoming of this modeling effort is that finite-element techniques are used for the structural and stress intensity simulations, while a finite-difference approach is used to evaluate the leakoff and fracture-fluid response in the vertical crack. A consistent framework for conducting all simulations using finite-element modeling is formulated here.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Lauren Dawson ◽  
David Koncan ◽  
Andrew Post ◽  
Roger Zemek ◽  
Michael D. Gilchrist ◽  
...  

Abstract Accidental falls occur to people of all ages, with some resulting in concussive injury. At present, it is unknown whether children and adolescents are at a comparable risk of sustaining a concussion compared to adults. This study reconstructed the impact kinematics of concussive falls for children, adolescents, and adults and simulated the associated brain tissue deformations. Patients included in this study were diagnosed with a concussion as defined by the Zurich Consensus guidelines. Eleven child, 10 adolescent, and 11 adult falls were simulated using mathematical dynamic models(MADYMO), with three ellipsoid pedestrian models sized to each age group. Laboratory impact reconstruction was conducted using Hybrid III head forms, with finite element model simulations of the brain tissue response using recorded impact kinematics from the reconstructions. The results of the child group showed lower responses than the adolescent group for impact variables of impact velocity, peak linear acceleration, and peak rotational acceleration but no statistical differences existed for any other groups. Finite element model simulations showed the child group to have lower strain values than both the adolescent and adult groups. There were no statistical differences between the adolescent and adult groups for any variables examined in this study. With the cases included in this study, young children sustained concussive injuries at lower modeled brain strains than adolescents and adults, supporting the theory that children may be more susceptible to concussive impacts than adolescents or adults.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Gun-Ho Kim ◽  
John Yilin Wang

The interpretation of hydraulic fracturing pressure was initiated by Nolte and Smith in the 1980s. An accurate interpretation of hydraulic fracturing pressures is critical to understand and improve the fracture treatment in tight gas formations. In this paper, accurate calculation of bottomhole treating pressure was achieved by incorporating hydrostatic pressure, fluid friction pressure, fracture fluid property changes along the wellbore, friction due to proppant, perforation friction, tortuosity, casing roughness, rock toughness, and thermal and pore pressure effects on in-situ stress. New methods were then developed for more accurate interpretation of the net pressure and fracture propagation. Our results were validated with field data from tight gas formations.


2013 ◽  
Vol 639-640 ◽  
pp. 992-997 ◽  
Author(s):  
Jian Ping Han ◽  
Yong Peng Luo

Using the static and dynamic test data simultaneously to update the finite element model can increase the available information for updating. It can overcome the disadvantages of updating based on static or dynamic test data only. In this paper, the response surface method is adopted to update the finite element model of the structure based on the static and dynamic test. Using the reasonable experiment design and regression techniques, a response surface model is formulated to approximate the relationships between the parameters and response values instead of the initial finite element model for further updating. First, a numerical example of a reinforced concrete simply supported beam is used to demonstrate the feasibility of this approach. Then, this approach is applied to update the finite element model of a prestressed reinforced concrete rigid frame-continuous girders bridge based on in-situ static and dynamic test data. Results show that this approach works well and achieve reasonable physical explanations for the updated parameters. The results from the updated model are in good agreement with the results from the in-situ measurement. The updated finite element model can accurately represent mechanical properties of the bridge and it can serve as a benchmark model for further damage detection and condition assessment of the bridge.


2012 ◽  
Vol 268-270 ◽  
pp. 721-724
Author(s):  
Zhan Qu ◽  
Xiao Zeng Wang ◽  
Yi Hua Dou

With the prolonged production term and the stimulation of the oil well in oil-field, the load which results from the in-situ stress is one of the main reasons to the casing damage. Taking the casing in Cementing section, the cement and the rock surrounding the cement into consideration, a mechanical model is established, while analytical solutions of displacement and stress distribution is obtained. The finite element method is adopted to obtain the numerical solutions of the mechanics model. The result shows that analytical solutions and finite element solutions are approximate. Finite element model of casing/cement/formation which is established in the paper can be used to analyze the load and stress distribution of worn casing with non-uniform in-situ stress.


1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


Sign in / Sign up

Export Citation Format

Share Document