mixed phase region
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pengguo Zhao ◽  
Hui Xiao ◽  
Chang Liu ◽  
Yunjun Zhou

The effects of thermodynamic and moisture factors on cloud-to-ground (CG) lightning polarity in the warm season were discussed. Small convective available potential energy (CAPE) represents relatively shallow convection, which is beneficial to the generation of positive lightning. Large vertical wind shear results in the displacement of upper-level positive ice crystals and promotes the initiation of +CG lightning from positive ice crystals. The dry low- to midlevel troposphere and the high cloud base in the plateau region favor +CG lightning, while the strong thermodynamic conditions in the basin region offset the influence of these moisture factors. In the plateau region, due to the limited cloud thickness, high total column liquid water may mean high cloud water content in the warm cloud region rather than high liquid water content in the mixed-phase region, which is unfavorable for the middle-level positive graupel and thus is unfavorable for the initiation of +CG lightning. In the basin region, the cloud thickness is relatively thicker, the high total column liquid water means that the liquid water content in the warm cloud and the mixed-phase region is both high, which is conducive to the middle-level positive graupel and the +CG lightning.


Author(s):  
Matthias Hanauske ◽  
Lukas R. Weih ◽  
Horst Stöcker ◽  
Luciano Rezzolla

AbstractHypermassive hybrid stars (HMHS) are extreme astrophysical objects that could be produced in the merger of a binary system of compact stars. In contrast to their purely hadronic counterparts, hypermassive neutron stars (HMNS), these highly differentially rotating objects contain deconfined strange quark matter in their slowly rotating inner region. HMHS and HMNS are both mestastable configurations and can survive only shortly after the merger before collapsing to rotating black holes. The appearance of the phase transition from hadronic to quark matter in the interior region of the HMHS and its conjunction with the emitted GW will be addressed in this article by focussing on a specific case study of the delayed phase-transition scenario that takes place during the post-merger evolution of the remnant. The complicated dynamics of the collapse from the HMNS to the more compact HMHS will be analysed in detail. In particular, we will show that the interplay between the spatial density/temperature distributions and the rotational profiles in the interior of the wobbling HMHS after the collapse generates a high-temperature shell within the hadron-quark mixed phase region of the remnant.


2020 ◽  
Author(s):  
Juha Tonttila ◽  
Harri Kokkola ◽  
Tomi Raatikainen ◽  
Jaakko Ahola ◽  
Hannele Korhonen ◽  
...  

<p>Intentional release of large hygroscopic particles in a cloud, i.e. cloud seeding, is potentially capable of increasing rain formation. In this work, we focus on convective clouds of moderate intensity observed over the United Arab Emirates, where we use a large eddy simulator coupled with detailed bin aerosol-cloud microphysics module (UCLALES-SALSA) to study the processes controlling the seeding efficacy. Despite numerous field experiments, the conditions that favor efficient seeding induced rain enhancement are not well characterized. Models such as UCLALES-SALSA provide the means to study the microphysical effects in varying ambient conditions in a controlled setting. The clouds targeted by our simulations have a mixed-phase component and rain is primarily produced by the cold precipitation process. The results show that the fast growing droplets formed by the relatively large hygroscopic seeding aerosol affect the riming process in the mixed-phase region inside the clouds. The collision rate between the hydrometeors in the mixed-phase region is enhanced, producing larger frozen particles. Consequently, the ice tends to get more heavily rimed, as indicated by the fraction of rimed ice from the total ice mass, which promotes increased particle fall velocities.</p><p> </p><p>However, the impact of seeding on the riming process depends on the state of the cloud and its environment. In conditions already favoring high rime fraction, often associated with relatively strong surface precipitation events, the effect of seeding is hindered, at least in terms of relative difference. Nevertheless, even if the effect of seeding on the total precipitation yield is small, it may still affect the timing of the precipitation onset, a topic currently under investigation. Work is also in progress to characterize the dependence between ambient conditions (in terms of aerosol and the thermodynamic properties of the atmospheric column) and the susceptibility of the mixed-phase clouds to seeding injection.</p>


2011 ◽  
Vol 26 (4) ◽  
pp. 468-486 ◽  
Author(s):  
Jennifer L. Palucki ◽  
Michael I. Biggerstaff ◽  
Donald R. MacGorman ◽  
Terry Schuur

Abstract Two small multicellular convective areas within a larger mesoscale convective system that occurred on 20 June 2004 were examined to assess vertical motion, radar reflectivity, and dual-polarimetric signatures between flash and non-flash-producing convection. Both of the convective areas had similar life cycles and general structures. Yet, one case produced two flashes, one of which may have been a cloud-to-ground flash, while the other convective area produced no flashes. The non-lightning-producing case had a higher peak reflectivity up to 6 km. Hence, if a reflectivity-based threshold were used as a precursor to lightning, it would have yielded misleading results. The peak upward motion in the mixed-phase region for both cases was 8 m s−1 or less. However, the lightning-producing storm contained a wider region where the updraft exceeded 5 m s−1. Consistent with the broader updraft region, the lightning-producing case exhibited a distinct graupel signature over a broader region than the non-lightning-producing convection. Slight differences in vertical velocity affected the quantity of graupel present in the mixed-phase region, thereby providing the subtle differences in polarimetric signatures that were associated with lightning activity. If the results here are generally applicable, then graupel volume may be a better precursor to a lightning flash than radar reflectivity. With the dual-polarimetric upgrade to the national observing radar network, it should be possible to better distinguish between lightning- and non-lightning-producing areas in weak convective systems that pose a potential safety hazard to the public.


2007 ◽  
Vol 64 (3) ◽  
pp. 738-761 ◽  
Author(s):  
Vaughan T. J. Phillips ◽  
Leo J. Donner ◽  
Stephen T. Garner

Abstract A novel type of limited double-moment scheme for bulk microphysics is presented here for cloud-system-resolving models (CSRMs). It predicts the average size of cloud droplets and crystals, which is important for representing the radiative impact of clouds on the climate system. In this new scheme, there are interactive components for ice nuclei (IN) and cloud condensation nuclei (CCN). For cloud ice, the processes of primary ice nucleation, Hallett–Mossop (HM) multiplication of ice particles (secondary ice production), and homogeneous freezing of aerosols and droplets provide the source of ice number. The preferential evaporation of smaller droplets during homogeneous freezing of cloud liquid is represented for the first time. Primary and secondary (i.e., in cloud) droplet nucleation are also represented, by predicting the supersaturation as a function of the vertical velocity and local properties of cloud liquid. A linearized scheme predicts the supersaturation, explicitly predicting rates of condensation and vapor deposition onto liquid (cloud liquid, rain) and ice (cloud ice, snow, graupel) species. The predicted supersaturation becomes the input for most nucleation processes, including homogeneous aerosol freezing and secondary droplet activation. Comparison of the scheme with available aircraft and satellite data is performed for two cases of deep convection over the tropical western Pacific Ocean. Sensitivity tests are performed with respect to a range of nucleation processes. The HM process of ice particle multiplication has an important impact on the domain-wide ice concentration in the lower half of the mixed-phase region, especially when a lack of upper-level cirrus suppresses homogeneous freezing. Homogeneous freezing of droplets and, especially, aerosols is found to be the key control on number and sizes of cloud particles in the simulated cloud ensemble. Preferential evaporation of smaller droplets during homogeneous freezing produces a major impact on ice concentrations aloft. Aerosols originating from the remote free troposphere become activated in deep convective updrafts and produce most of the supercooled cloud droplets that freeze homogeneously aloft. Homogeneous aerosol freezing is found to occur only in widespread regions of weak ascent while homogeneous droplet freezing is restricted to deep convective updrafts. This means that homogeneous aerosol freezing can produce many more crystals than homogeneous droplet freezing, if conditions in the upper troposphere are favorable. These competing mechanisms of homogeneous freezing determine the overall response of the ice concentration to environmental CCN concentrations in the simulated cloud ensemble. The corresponding sensitivity with respect to environmental IN concentrations is much lower. Nevertheless, when extremely high concentrations of IN are applied, that are typical for plumes of desert dust, the supercooled cloud liquid is completely eliminated in the upper half of the mixed phase region. This shuts down the process of homogeneous droplet freezing.


2005 ◽  
Vol 20 (4) ◽  
pp. 517-530 ◽  
Author(s):  
Matthew S. van den Broeke ◽  
David M. Schultz ◽  
Robert H. Johns ◽  
Jeffry S. Evans ◽  
John E. Hales

Abstract During 9–11 November 1998 and 9–10 March 2002, two similar convective lines moved across the central and eastern United States. Both convective lines initiated over the southern plains along strong surface-based cold fronts in moderately unstable environments. Both lines were initially associated with cloud-to-ground (CG) lightning, as detected by the National Lightning Detection Network, and both events met the criteria to be classified as derechos, producing swaths of widespread damaging wind. After moving into areas of marginal, if any, instability over the upper Midwest, CG lightning production ceased or nearly ceased, although the damaging winds continued. The 9 March 2002 line experienced a second phase of frequent CG lightning farther east over the mid-Atlantic states. Analysis of these two events shows that the production of CG lightning was sensitive to the occurrence and vertical distribution of instability. Periods with frequent CG lightning were associated with sufficient instability within the lower mixed-phase region of the cloud (i.e., the temperature range approximately between −10° and −20°C), a lifting condensation level warmer than −10°C, and an equilibrium level colder than −20°C. Periods with little or no CG lightning possessed limited, if any, instability in the lower mixed-phase region. The current Storm Prediction Center guidelines for forecasting these convective lines are presented.


2005 ◽  
Vol 902 ◽  
Author(s):  
Shintaro Yokoyama ◽  
Satoshi Okamoto ◽  
Keisuke Saito ◽  
Takashi Iijima ◽  
Hirotake Okino ◽  
...  

AbstractWe grew the epitaxial Pb(Zr1-xTix)O3 [PZT] and (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 [PMN-PT] films, above 2 μm in thickness, on (100)cSrRuO3//(100)SrTiO3 substrates by metalorganic chemical vapor deposition (MOCVD). PbTiO3 content (x) dependencies of the crystal structure, dielectric and piezoelectric properties were systematically investigated for these films. The constituent phase changed from a rhombohedral (pseudocubic) single phase, a mixture phase of rhombohedral (pseudocubic) and tetragonal phases, and a tetragonal single phase with increasing x for both of PZT and PMN-PT films. The mixture phase region was observed when x=0.40−0.60 for PZT films and x=0.40−0.55 for PMN-PT films, which became wider than that reported ones for PZT sintered bodies and PMN-PT single crystals. In addition, x value moves to the higher one than that reported for the single crystal and/or the sintered body in case of PMN-PT films, while was almost the same in case of PZT films. The dependence of relative dielectric constant εr was maximum at the mixed phase region for both films, which were similar to the case of their bulk materials. The higher value of εr was ascertained for the PMN-PT films compared with PZT films, however, the magnitude was lower than the reported one for bulk materials. The longitudinal electric-field-induced strain Δx33 and transverse piezoelectric coefficient e31,f for PZT films were also maximum at the mixed phase region, on the other hand, that for PMN-PT films were maximum at larger x edge of rhombohedral (pseudocubic) region. Almost the same order of Δx33 was observed under applied electric fields up to 100 kV/cm, while larger e31,f was observed in PMN-PT films compared with the case of PZT films. e31,f coefficients of ∼−8.9 C/m2 and ∼−11.0 C/m2 were calculated for the PZT film with x=0.46 and for the PMN-PT film with x=0.39, respectively.


Sign in / Sign up

Export Citation Format

Share Document