ultralow interfacial tension
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Wei Yu ◽  
Xianmin Zhou ◽  
Mazen Yousef Kanj

Abstract The foam coarsening process is significant to foam stability in porous media. This study provides, for the first time, direct visualization of the foam coarsening process in porous media under realistic reservoir conditions. Foam coarsening behavior in porous media has shown a similar linear increase in the average bubble area to that in an open system but differs in two stages. The average bubble area increases with a faster rate in stage 1 and then increases with a slower rate in stage 2 and stage 2 dominates the foam coarsening process. The transition between the two stages occurs as the inner bubbles disappear when the edge bubbles start feeling the effects of the walls. The foam at steady-state shows a bimodal size distribution with bubbles trapped in the pore bodies and pore throats. The effects of pore pressure (600-3200 psi) and temperature (22-100 °C) were studied. Foam coarsening dynamics are sensitive to pore pressure and temperature, where higher pore pressure and lower temperature are more favorable to maintain a stable foam. Finally, the coarsening rates of foams generated with different gas phases were compared. In contrast to N2 foam and gas CO2 foam, supercritical CO2 foam exhibits the slowest coarsening rate because of its ultralow interfacial tension.


Author(s):  
Pattamas Rattanaudom ◽  
Bor-Jier-Ben Shiau ◽  
Jeffrey Harwell ◽  
Uthaiporn Suriyapraphadilok ◽  
Ampira Charoensaeng

2021 ◽  
Vol 53 (2) ◽  
pp. 210210
Author(s):  
Muhammad Mufti Azis ◽  
Fergie Febrina ◽  
Ignesti Anindia ◽  
Galuh Almas Darmawati ◽  
Desi Amalia Fenyka ◽  
...  

Indonesia aims to implement large-scale enhanced oil recovery (EOR) to increase the national oil production. Chemical EOR is a promising technology to boost the production of old reservoirs with the aid of surfactants and polymers. Thus, the production of low-cost EOR surfactants from local resources with acceptable performance is highly attractive. The objective of the present work was to demonstrate the development of low-cost lignosulfonate surfactant production from kraft black liquor (BL). First, lignin was isolated from black liquor using a novel CO2 bubbling technique, followed by addition of coagulants. Next, sodium lignosulfonate (SLS) was synthesized from the resulting lignin, followed by formulation of SLS with octanol and palm fatty acid distillate (PFAD) soap to obtain an ultralow interfacial tension (IFT) surfactant. The initial IFT value of the SLS solution was already high at 0.7 mN/m. After formulation, the composition SLS:PFAD soap:octanol = 70:22:8 (wt%) improved the IFT value to 3.1 10-3 mN/m. An ultralow IFT in the range of 10-3 mN/m as achieved here fulfills the required IFT value for EOR surfactant.


2021 ◽  
Author(s):  
Gulcan Bahar Koparal ◽  
Himanshu Sharma ◽  
Pathma J. Liyanage ◽  
Krishna K. Panthi ◽  
Kishore Mohanty

Abstract High surfactant adsorption remains a bottleneck for a field-wide implementation of surfactant floods. Although alkali addition lowers surfactant adsorption, alkali also introduces many complexities. In our systematic study, we investigated a simple and cost effective method to lower surfactant adsorption in sandstones without adding unnecessary complexities. Static and dynamic surfactant adsorption studies were conducted to understand the role of sacrificial agent sodium polyacrylate (NaPA) on adsorption of anionic surfactants n outcrop and resevoir sandstone corefloods. The dynamic retention studies were conducted with and without the presence of crude oil. Surfactant phase behavior studies were first conducted to identify surfactant blends that showed ultralow interfacial tension (IFT) with two crude oils at reservoir temperature (40°C). Base case dynamic retention data, in the absence of crude oil, was obtained for these surfactant formulations at their respective optimum salinities. NaPA was then added to these surfactant formulations and similar adsorption tests were conducted. Finally, oil recovery SP corefloods were conducted for each surfactant formulations, with and without adding NaPA, and oil recovery data including the surfactant retention was compared. Static adsorption of these surfactant formulations at their respective optimum salinities on crushed sandstone varied from 0.42-0.74 mg/g-rock. Their respective adsorptions lowered to 0.37-0.49 mg/g-rock on adding a small amount of NaPA. Surfactant retention in single-phase dynamic SP corefloods in the absence of crude oil in outcrop Berea cores was between 0.17 to 0.23 mg/g-rock. On adding a small amount of NaPA, the surfactant adsorption values lowered to 0.1 mg/g-rock. Oil recovery SP corefloods showed high oil recovery (~91% ROIP) and low surfactant retention (~0.1 mg/g-rock) on adding NaPA to the surfactant formulations.


2020 ◽  
Vol 9 (2) ◽  
pp. 945-951

The nanostructured materials are the basic scientific interest in the research community. The properties of nanostructured materials with their variable sizes, shapes and reduced dimensions boost their performance towards wide variety of applications concomitant to electronics, optoelectronics, sensors, photocatalysis, and biomedical field. Among all the established methods to design nano structured materials, micro-emulsion has attained a significant role because of its unique properties like thermodynamically stability, ultralow interfacial tension, and large interfacial area. Apart from its versatility, microemulsion is one of the most cost effective and environmentally benign preparation method which can control the particle size, geometry, morphology, homogeneity, and surface area of nano structured materials. This review article focuses on the recent development in the above area, various factors that influence the oil-in water micro-emulsion (µ-emulsion) to formulate different shapes and size of nano structured materials.


Sign in / Sign up

Export Citation Format

Share Document